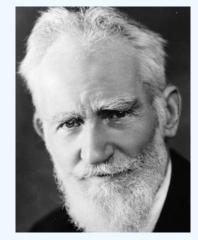
4–8 December 2023 // Kuala Lumpur, Malaysia

Reconfigurable Intelligent Surfaces for 6G: From Academic Research to Industry Development

Linglong Dai (IEEE Fellow)

Tsinghua University, Beijing, China daill@tsinghua.edu.cn

Yifei Yuan (IEEE Fellow)


China Mobile Research Institute, Beijing, China yuanyifei@chinamobile.com

1G-5G: Adapt to Environment

What has George Bernard Shaw told us?

Bernard Shaw

Reasonable men
 adapt themselves to
 their environment;
 unreasonable men try
 to adapt their
 environment to
 themselves.

- > British dramatist
- > Nobel Prize in Literature

Channel adaption for 1G-5G

Digital modulation

2G

3Ğ

4G

5G

- CDMA power control
- OFDM adaptive coding and modulation
- eMBB/mMTC/uRLLC

We can "adapt to the channels" from 1G to 5G, so does 6G

Contents

Chapter 1: Introduction

- i. Background of RIS
- ii. RIS fundamentals
- iii. Hardware design and prototypes

Chapter 2: Advanced algorithms for RIS

- i. Compressed sensing based channel estimation
- ii. Two-timescale channel estimation
- iii. Non-stationary channel estimation
- iv. Near-field beam training
- v. RIS beamforming design

Chapter 3: Advanced architectures for RIS

- i. Active RIS
- ii. Transmissive RIS
- iii. User-centric RIS
- iv. Wideband RIS
- v. Holographic RIS

Chapter 4: System-level simulation of RIS

- i. System-level simulation setup
- ii. Performance evaluation results
- iii. Three operation modes for RIS
- iv. RIS vs. network-controlled repeater (NCR)
- v. Preliminary Exploration of Small Scale Channel Models

Chapter 5: Trial tests of RIS

- i. Trials in sub-6 GHz commercial networks
- ii. Prototype systems testing in IMT-2030
- iii. Test specifications for microwave anechoic chamber

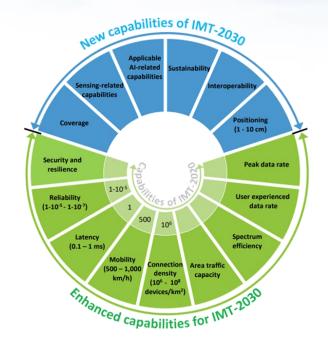
Chapter 6: Standardization of RIS

- i. Precedence in 4G LTE era
- ii. Possible strategy for RIS
- Chapter 7: Future trends of RIS
- Conclusions

6G Applications and KPIs

- From 5G to 6G, emerging applications (holographic Video, extended reality, etc.) will drive the iterative upgrade of mobile communications
- In June 2023, International Telecommunication Union (ITU) has proved key performance indicators (KPIs) for 6G communications

Holographic Video

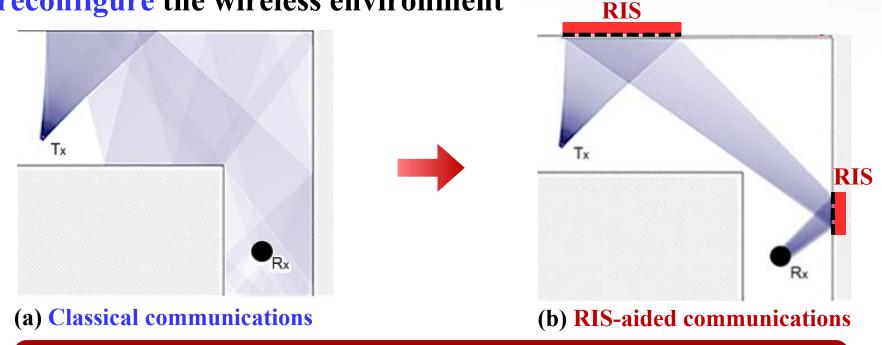

Digital Replica

Extended Reality

Intelligent Transport

Key performance indicators for 6G

ITU-R WP 5D, Draft Recommendation, "Framework and overall objectives of the future development of IMT for 2030 and beyond," Jun. 2023.

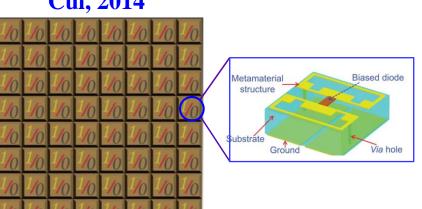

Background of RIS

- Reconfigurable Intelligent Surface (RIS) is an array composed of a large number of reconfigurable sub-wavelength elements
- Each element can adjust the electromagnetic properties of incident waves, so as to

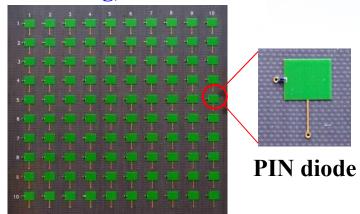
intelligently reconfigure the wireless environment

RIS is a potential key technology for 6G communications

History of RIS

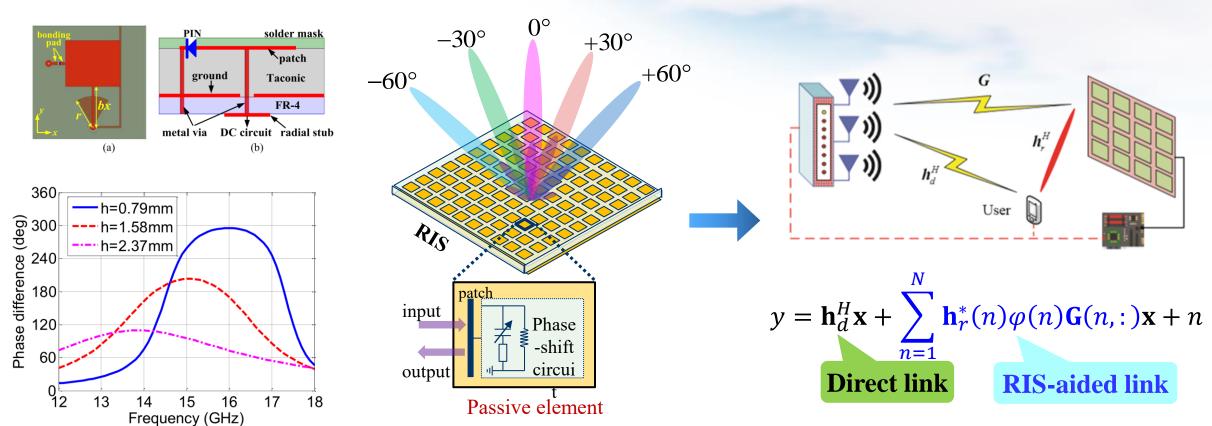


- Metamaterial: Artificial material with a structure that exhibits unnatural properties
- **Metasurface:** Two-dimensional (2D) structure composed of individual elements to manipulate signals
- Four typical realizations: **Electric/magnetic/thermal/light-sensitive**


Capasso, 2011

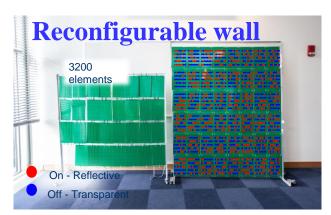
Cui, 2014

Yang, 2016


- [1] N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, 334(6054), pp. 333–337, Oct. 2011.
- [2] T. Cui, M. Qi, X. Wan, J. Zhao, and Q. Cheng, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light: Science & Applications, vol. 3, p. 218, Oct. 2014.
- [3] H. Yang, X. Cao, F. Yang, J. Gao, S. Xu, M. Li, X. Chen, Y. Zhao, Y. Zheng, and S. Li, "A programmable metasurface with dynamic polarization, scattering and focusing control," Scientific Reports, vol. 6, p. 35692 EP, Oct. 2016.

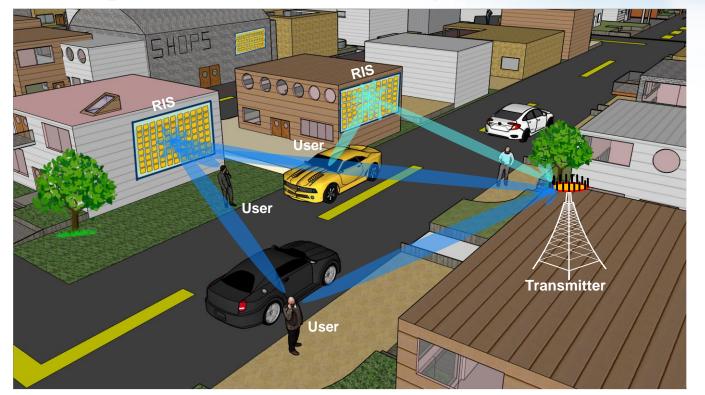
RIS Fundamentals

• RIS can be viewed as a reflective array composed of a large number of sub-wavelength programmable elements


C. Huang, A. Zappone, G. C. Alexandropoulos, M. Debbah, and C. Yuen, "Reconfigurable intelligent surfaces for energy efficiency in wireless communication," *IEEE Trans. Wireless Commun.*, vol. 18, no. 8, pp. 4157-4170, Aug. 2019. (2021 IEEE Marconi Prize Paper Award)

RIS Prototypes

- 3200-element reconfigurable wall (MIT, Feb. 2020)
- Transmissive dynamic metasurfaces (Japan NTT and American AGC, Jan. 2020)
- Reconfigurable paintings (Southeast University, Apr. 2021)
- 256-element RIS@2.3 GHz communication prototype (Tsinghua University, Mar. 2020)

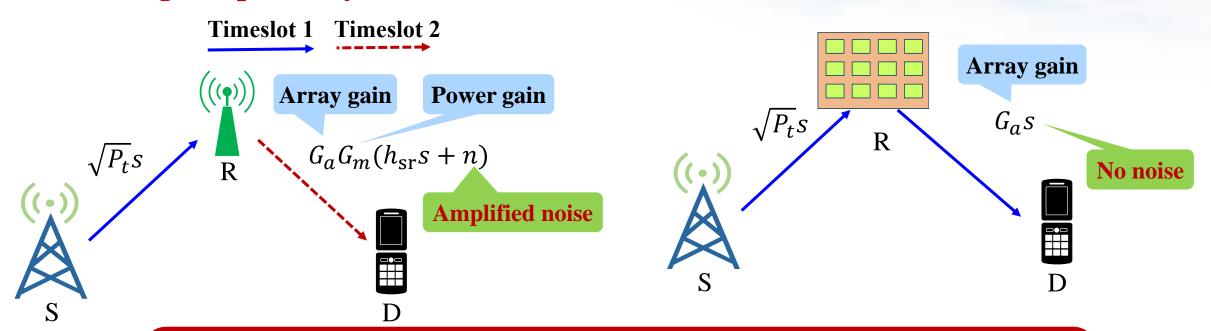

L. Dai*, B. Wang, et al, "Reconfigurable intelligent surface-based wireless communication: Antenna design, prototyping and experimental results," *IEEE Access*, vol. 8, pp. 45913-45923, Mar. 2020. (2020 IEEE Access Best Multimedia Award)

RIS-Aided Wireless Communications

- Overcome the blockage; provide additional communication links
- Enhance the signal quality; increase the spectrum efficiency
- Save the power consumption; increase the energy efficiency

Z. Zhang and L. Dai*, "Reconfigurable intelligent surfaces for 6G: Nine fundamental issues and one critical problem," *Tsinghua Sci. Technol.*, vol. 28, no. 5, pp. 929-939, Oct. 2023. (Invited Paper)

RIS vs. Massive MIMO


	Massive MIMO	RIS
Hardware structure	RF chain digital baseband processing RF chain RF chain	microcontroller
Beamforming ability	Yes	Yes
Operating mechanism	Transmit/Receive signals	Re-radiate signals
RF chains	Yes	No
Baseband processing	Yes	No
Cost	High	Low
Power consumption	Very high	Low

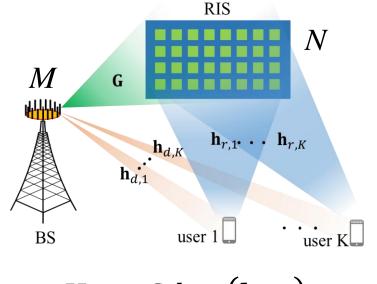
RIS vs. Relays

- Decode-and-forward (DF) relays decode signals and then regenerate the signals to serve users
- Amplify-and-forward (AF) relays amplify signals and forward to users, while RIS only reflects signals passively

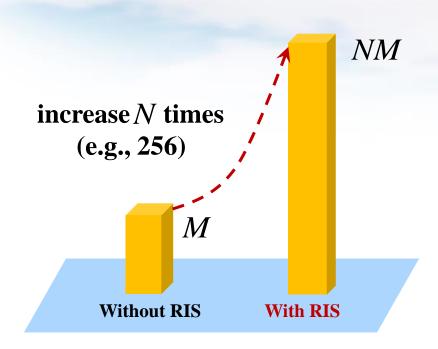
RIS do not demodulate or amplify signals, which has negligible noise, real-time processing, and very low power consumption

Contents

- Chapter 1: Introduction
 - i. Background of RIS
 - ii. RIS fundamentals
 - iii. Hardware design and prototypes
- Chapter 2: Advanced algorithms for RIS
 - i. Compressed sensing based channel estimation
 - ii. Two-timescale channel estimation
 - iii. Non-stationary channel estimation
 - iv. Near-field beam training
 - v. RIS beamforming design
- Chapter 3: Advanced architectures for RIS
 - i. Active RIS
 - ii. Transmissive RIS
 - iii. User-centric RIS
 - iv. Wideband RIS
 - v. Holographic RIS


- Chapter 4: System-level simulation of RIS
 - i. System-level simulation setup
 - ii. Performance evaluation results
 - iii. Three operation modes for RIS
 - iv. RIS vs. network-controlled repeater (NCR)
 - v. Preliminary Exploration of Small Scale Channel Models
- Chapter 5: Trial tests of RIS
 - i. Trials in sub-6 GHz commercial networks
 - ii. Prototype systems testing in IMT-2030
 - iii. Test specifications for microwave anechoic chamber
- Chapter 6: Standardization of RIS
 - i. Precedence in 4G LTE era
 - ii. Possible strategy for RIS
- Chapter 7: Future trends of RIS
- Conclusions

Challenge of Channel Estimation

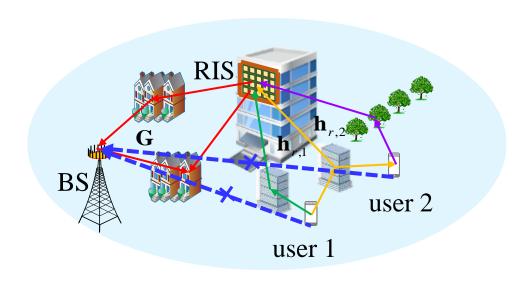


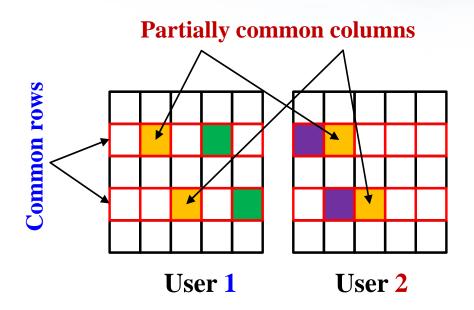
 High-dimensional cascaded channel of the RIS-assisted communication systems requires a large pilot overhead

$$\mathbf{H}_k \triangleq \mathbf{G} \operatorname{diag}(\mathbf{h}_{r,k})$$

 $(M \times N)$ Cascaded Channel

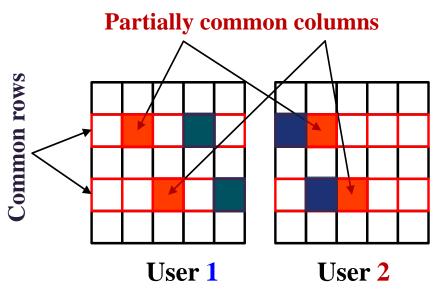
Unaffordable pilot overhead!


Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, "Intelligent reflecting surface-aided wireless communications: A tutorial," *IEEE Trans. Commun.*, vol. 69, no. 5, pp. 3313-3351, May 2021.


Channel Property: Double-structured sparsity

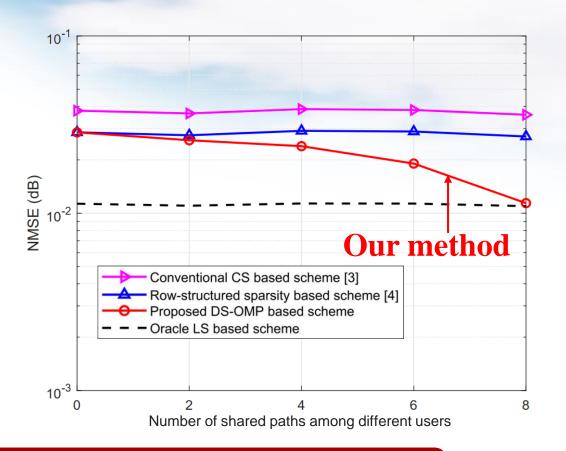
- All users share the common G: All non-zero elements are in the same rows
- All users share partially common scatterers between the RIS and UE: Partial non-zero elements are in the same columns

X. Wei, D. Shen, and **L. Dai***, "Channel estimation for RIS assisted wireless communications: Part II - An improved solution based on double-structured sparsity," *IEEE Commun. Lett.*, vol. 25, no. 5, pp. 1398-1402, May 2021. (Invited Paper)


Key Idea

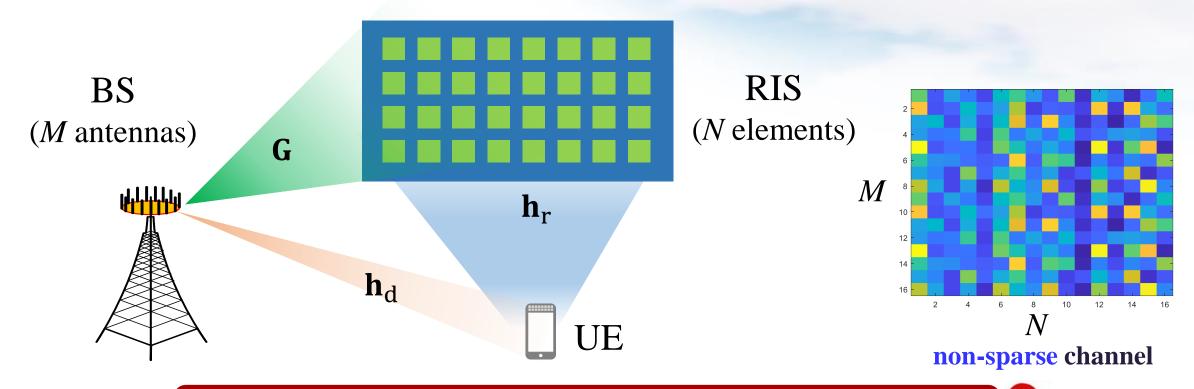
- Estimate the common row support
 - > The common support set of G is determined
- Estimate the partially common column support
 - \triangleright The partially common support set of h_r is determined
- Estimate the individual column support
 - > The individual support sets of different users are determined

X. Wei, D. Shen, and **L. Dai***, "Channel estimation for RIS assisted wireless communications: Part II - An improved solution based on double-structured sparsity," *IEEE Commun. Lett.*, vol. 25, no. 5, pp. 1398-1402, May 2021. (Invited Paper)


Simulation Results

Comparison of the NMSE performance

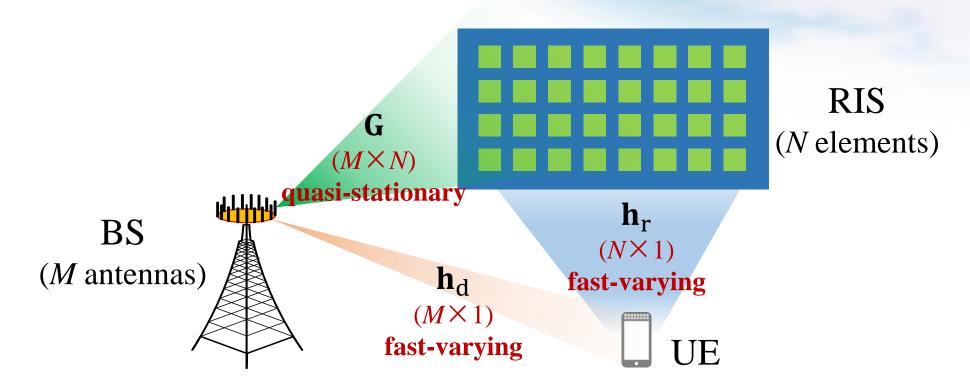
The channel estimation accuracy outperforms existing schemes


X. Wei, D. Shen, and L. Dai*, "Channel estimation for RIS assisted wireless communications: Part II - An improved solution based on double-structured sparsity," *IEEE Commun. Lett.*, vol. 25, no. 5, pp. 1398-1402, May 2021. (Invited Paper)

Challenge of Compressed Sensing

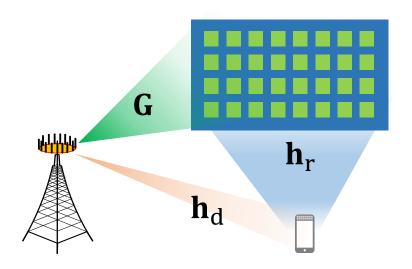
• Compressed sensing based channel estimation schemes cannot be utilized in non-sparse scenarios, which will result in a large pilot overhead

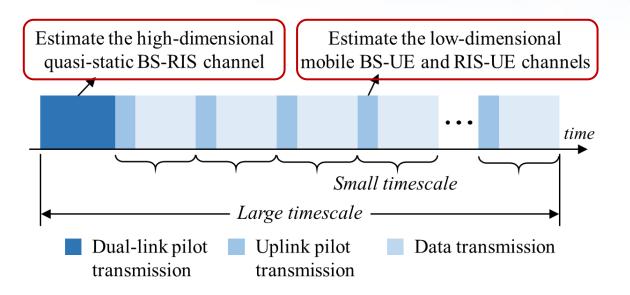
How to reduce the pilot overhead for non-sparse channels


C. Hu, **L. Dai***, S. Han, and X. Wang, "Two-timescale channel estimation for reconfigurable intelligent surface aided wireless communications," *IEEE Trans. Commun.*, vol. 69, no. 11, pp. 7736-7747, Nov. 2021.

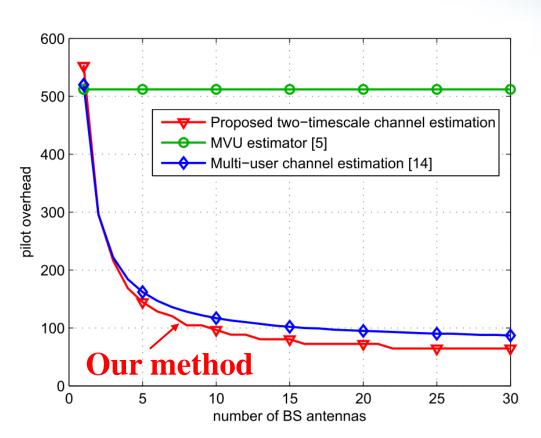
Two-Timescale Channel Property

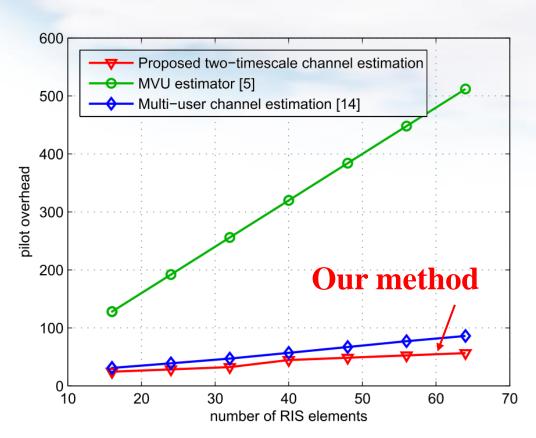
- BS-RIS channel: High-dimensional, but quasi-stationary
- BS-UE, RIS-UE channels: Fast-varying, but low-dimensional


C. Hu, **L. Dai***, S. Han, and X. Wang, "Two-timescale channel estimation for reconfigurable intelligent surface aided wireless communications," *IEEE Trans. Commun.*, vol. 69, no. 11, pp. 7736-7747, Nov. 2021.


Key Idea

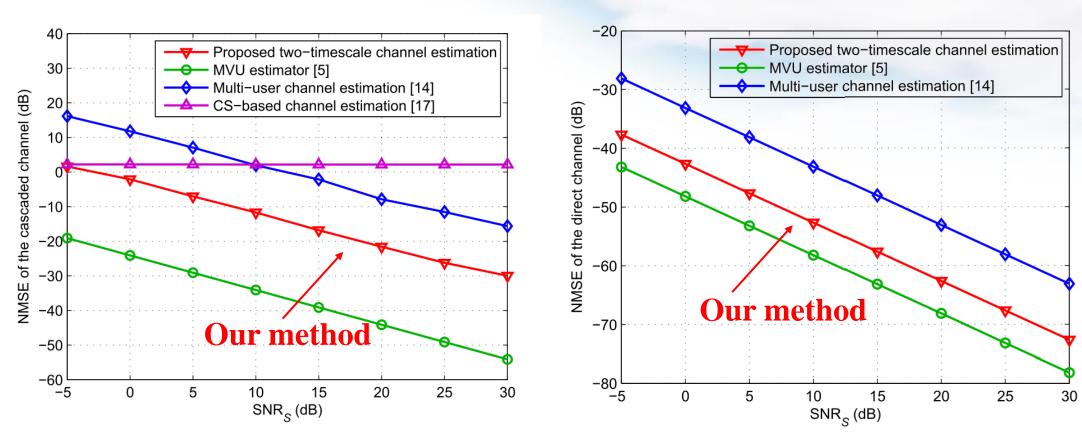
- Estimate the BS-RIS channel in a large timescale
 - > The pilot overhead can be neglected from a long-term perspective
- Estimate the BS-UE/RIS-UE channels in a small timescale
 - ➤ The pilot overhead is **small** thanks to the **low dimension**


C. Hu, **L. Dai***, S. Han, and X. Wang, "Two-timescale channel estimation for reconfigurable intelligent surface aided wireless communications," *IEEE Trans. Commun.*, vol. 69, no. 11, pp. 7736-7747, Nov. 2021.


Simulation Results

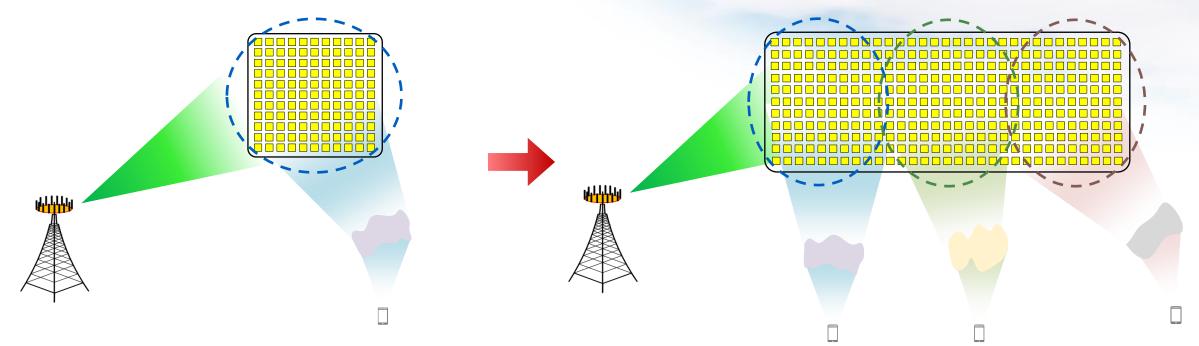
The pilot overhead significantly reduced by exploiting the two-timescale property

[5] T. L. Jensen and E. De Carvalho, "An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator," in *Proc. 2020 IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP'20)*, Barcelona, Spain, May 2020, pp. 5000-5004.


[14] Z. Wang, L. Liu, and S. Cui, "Channel estimation for intelligent reflecting surface assisted multiuser communications: Framework, algorithms, and analysis," *IEEE Trans. Wireless Commun.*, vol. 19, no. 10, pp. 6607-6620, Oct. 2020.

Simulation Results

• The channel estimation accuracy of the proposed scheme outperforms [14]


- [5] T. L. Jensen and E. De Carvalho, "An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator," in *Proc. 2020 IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP'20)*, Barcelona, Spain, May 2020, pp. 5000-5004.
- [14] Z. Wang, L. Liu, and S. Cui, "Channel estimation for intelligent reflecting surface assisted multiuser communications: Framework, algorithms, and analysis," *IEEE Trans. Wireless Commun.*, vol. 19, no. 10, pp. 6607-6620, Oct. 2020.

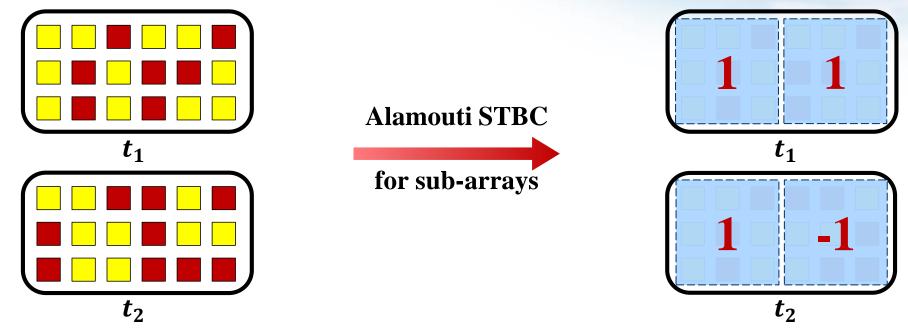
Challenge of XL-RIS Channel Estimation

• Challenge: The spatial non-stationary effect makes different parts of the antenna array see different scatterers/users

RIS: same scatterers/users for the entire array

XL-RIS: different scatterers/users for different parts

Existing schemes cannot estimate spatial non-stationary channel accurately

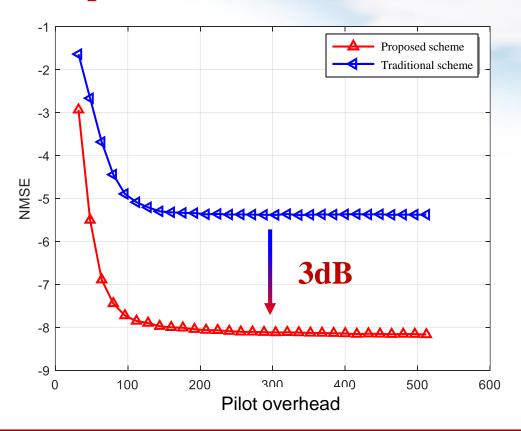

Z. Yuan, J. Zhang, Y. Ji, G. F. Pedersen, and W. Fan, "Spatial non-stationary near-field channel modeling and validation for massive MIMO systems," *IEEE Trans. Antennas Propag.*, vol. 71, no, 1, pp. 921-933, Jan. 2023.

Key Idea

- Divide the XL-RIS into several sub-arrays: from a non-stationary array to several stationary sub-arrays
 - > Apply Alamouti STBC to change the configuration of the XL-RIS by sub-array consistently

- Same XL-RIS configuration in different time slots Change the configuration of XL-RIS by sub-array
- Cannot extract signals of different sub-arrays

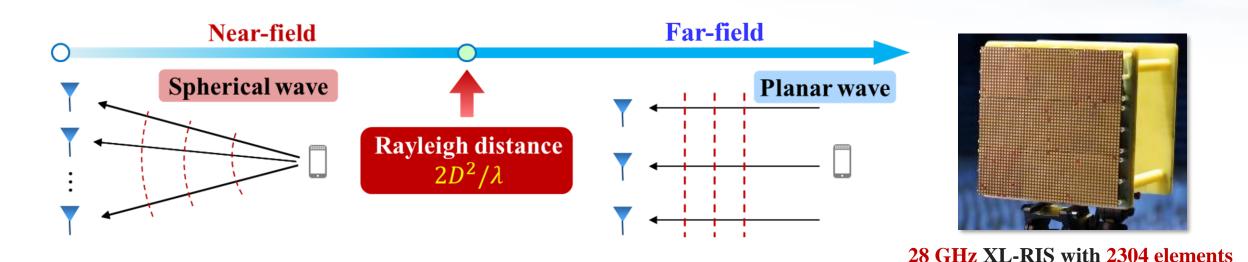
 Can extract signals of different sub-arrays


Convert non-stationary channel to stationary channel to improve accuracy

Simulation Results

Comparison of the NMSE performance

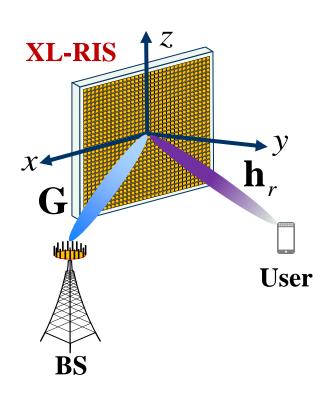
The NMSE performance improves significantly


Y. Chen and L. Dai*, "Non-Stationary Channel Estimation for Extremely Large-Scale MIMO," IEEE Trans. Wireless Commun., Dec. 2023.

Challenge of Near-Field Beam Training

- From RIS to extremely large-scale RIS (XL-RIS)
 - ➤ The fundamental change of electromagnetic field structure in the XL-RIS assisted communication systems lead to the mismatch between the traditional planar-wave codewords and the spherical-wave channels

How to conduct accurate beam training in the near-field



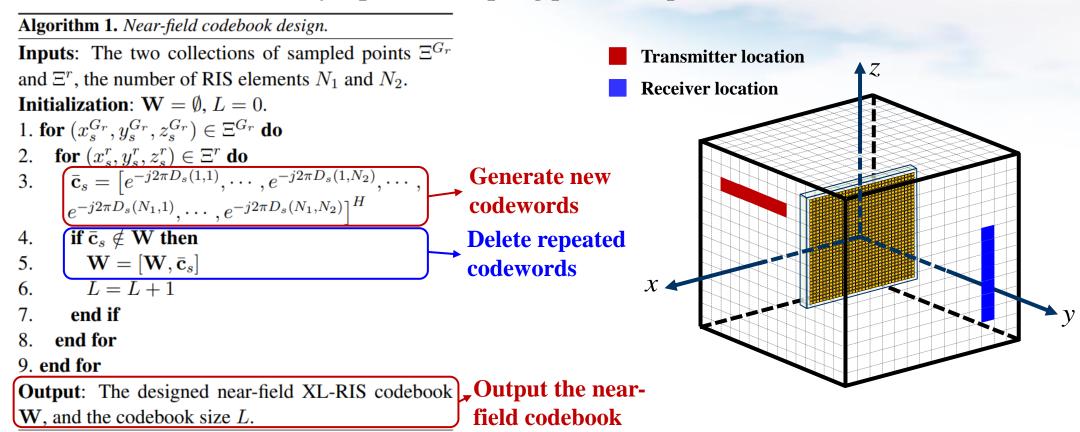
Near-Field XL-RIS Channel

- Far-field beam training: Apply angular-domain DFT codebook to search the best angle
- Near-field XL-RIS channel: Related not only to the angle, but also to the specific location (angle & distance) of a certain user

Far-field: related to the angle

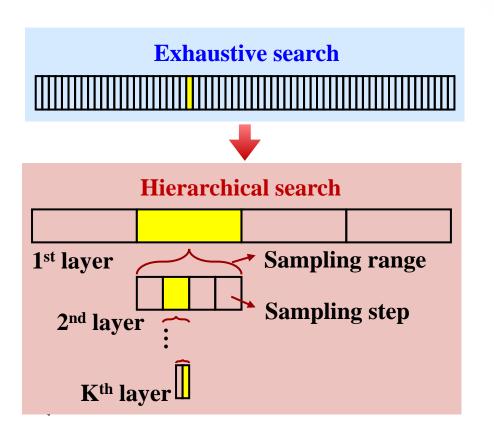
$$\mathbf{a}\left((\theta_{G_r}, \varphi_{G_r}), (\theta_r, \varphi_r)\right) = \left[e^{-j2\pi(\theta+\varphi)}, \cdots, e^{-j2\pi(N_1\theta+\varphi)}, \cdots, e^{-j2\pi(N_1\theta+N_2\varphi)}\right]^T$$

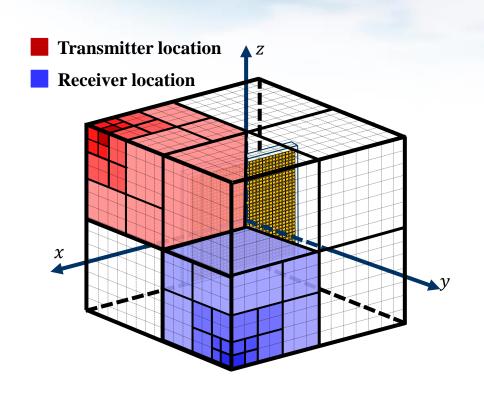
Near-field: related to the **location**


$$\mathbf{c}((x_{G_r}, y_{G_r}, z_{G_r}), (x_r, y_r, z_r)) = [e^{-j2\pi D(1,1)}, \cdots, e^{-j2\pi D(N_1,N_2)}, \cdots, e^{-j2\pi D(N_1,N_2)}]^T$$

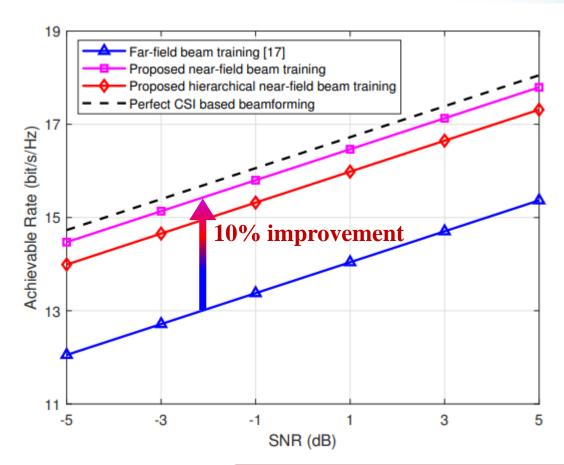
Near-field Codebook Design

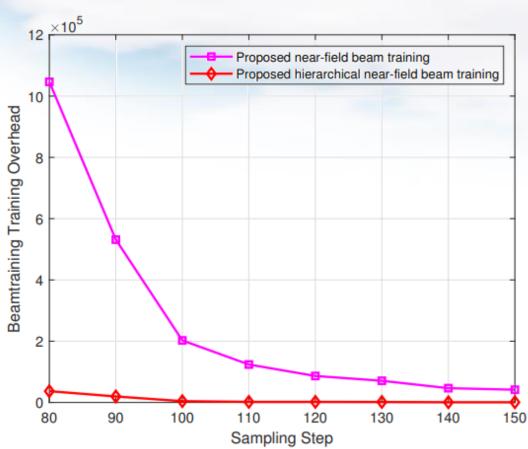
- Construct the near-field XL-RIS codebook based on near-field array response vector
 - > Each codeword is decided by a pair of sampling points in space




Hierarchical Near-Field Beam Training

• To reduce the beam training overhead, a hierarchical near-field XL-RIS codebook can be further constructed based on the near-field array response vector




Simulation Results

Comparison of the achievable rate performance and the beam training overhead

The beam training accuracy improves significantly

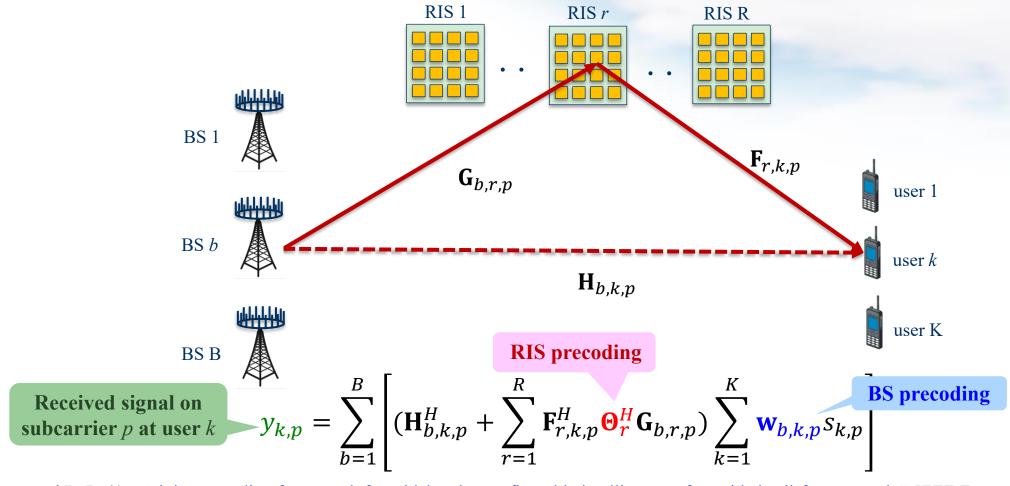
Challenge of RIS-aided cell-free beamforming

Challenge: How to significantly improve the capacity of cell-free network with power constraint?

• Solution: Introduce low-power RISs to serve multiple users cooperatively with multiple

APs

How to design the RIS beamforming in cell-free network



Joint BS-RIS Beamforming Design

System model: The superposition of BS signals and RIS signals

Z. Zhang and L. Dai*, "A joint precoding framework for wideband reconfigurable intelligent surface-aided cell-free network," *IEEE Trans. Signal Process.*, vol. 69, pp. 4085-4101, Aug. 2021.

Joint BS-RIS Beamforming Design

Joint precoding problem: Maximize the weighted sum rate

RIS precoding **BS** precoding The SINR of user *k* $f(\mathbf{\Theta}, \mathbf{W}) = \sum_{k=1}^{K} \sum_{k=1}^{P} \log_2 \left(1 + \gamma_{k,p}\right)$ maxmize **BS** power constraint

subject to
$$\sum_{k=1}^{K} \sum_{p=1}^{P} \left\| \mathbf{w}_{b,p,k} \right\|_{F}^{2} \leq P_{b,\max}, \forall b \in \mathbf{B}$$

$$\theta_{r,j} \in \mathbb{C}, \forall r \in \mathbb{R}, \forall j \in \mathbb{N}$$

RIS phase shift constraint

Algorithm 1 Proposed Joint Precoding Framework.

Input: All channels $\mathbf{H}_{b,k,p}$, $\mathbf{G}_{b,r,p}$ and $\mathbf{F}_{r,k,p}$ where $\forall b \in$ $\mathcal{B}, k \in \mathcal{K}, p \in \mathcal{P}.$

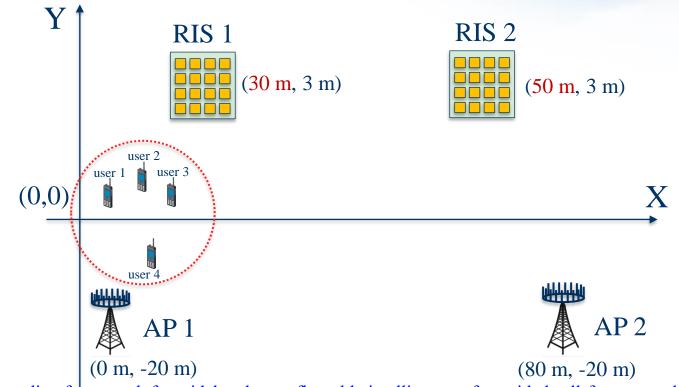
Output: Optimized active precoding vector W; Optimized passive precoding matrix Θ ; Weighted sum-rate R_{sum} .

- 1: Initialize W and Θ ;
- 2: while no convergence of R_{sum} do
- Update ρ by (15);
- Update $\boldsymbol{\xi}$ by (19);
- Update W by solving (24);
- Update ϖ by (29);
- Update Θ by solving (35);
- 8: end while
- 9: **return** \mathbf{W}^{opt} , $\mathbf{\Theta}^{\text{opt}}$, and R_{sum} .

Update beamforming design at BSs and RISs alternatingly

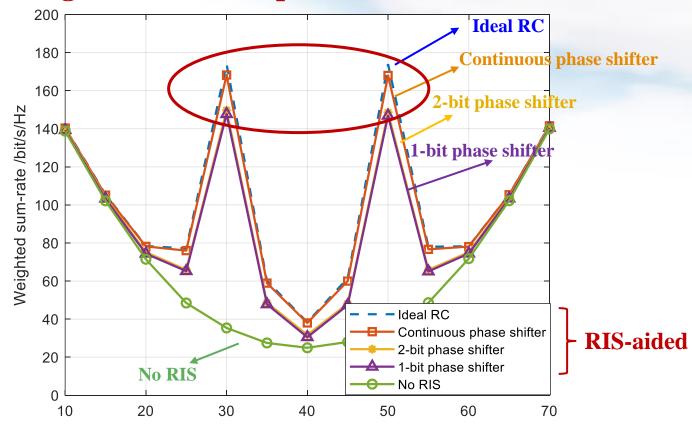
$$\gamma_{k,p} = \frac{\left|\sum_{b=1}^{B} (\mathbf{H}_{b,k,p}^{H} + \sum_{r=1}^{R} \mathbf{F}_{r,k,p}^{H} \mathbf{\Theta}_{r}^{H} \mathbf{G}_{b,r,p}) \mathbf{w}_{b,p,k}\right|^{2}}{\sum_{j=1,j\neq k}^{K} \left|\sum_{b=1}^{B} (\mathbf{H}_{b,k,p}^{H} + \sum_{r=1}^{R} \mathbf{F}_{r,k,p}^{H} \mathbf{\Theta}_{r}^{H} \mathbf{G}_{b,r,p}) \mathbf{w}_{b,p,j}\right|^{2} + \sigma_{k,p}^{2}}$$

Z. Zhang and L. Dai*, "A joint precoding framework for wideband reconfigurable intelligent surface-aided cell-free network," IEEE Trans. Signal Process., vol. 69, pp. 4085-4101, Aug. 2021.


Simulation Setup

Simulation parameters

- > 2 BSs (each is equipped with 8 antennas)
- > 2 RISs (each is equipped with 32 elements)
- > 4 users
- **▶** 6 subcarriers


Z. Zhang and L. Dai*, "A joint precoding framework for wideband reconfigurable intelligent surface-aided cell-free network," *IEEE Trans. Signal Process.*, vol. 69, pp. 4085-4101, Aug. 2021.

Simulation Results

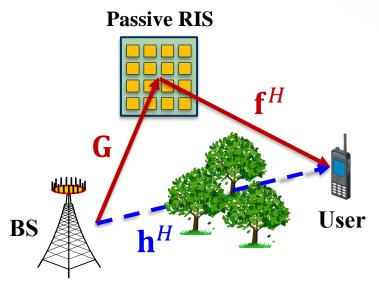
Comparison of the weighted sum-rate performance

The channel capacity of RIS-aided cell-free network increases significantly

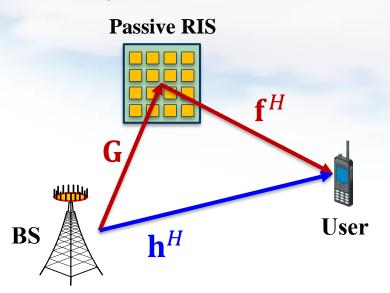
Z. Zhang and L. Dai*, "A joint precoding framework for wideband reconfigurable intelligent surface-aided cell-free network," *IEEE Trans. Signal Process.*, vol. 69, pp. 4085-4101, Aug. 2021.

Contents

- Chapter 1: Introduction
 - i. Background of RIS
 - ii. RIS fundamentals
 - iii. Hardware design and prototypes
- Chapter 2: Advanced algorithms for RIS
 - i. Compressed sensing based channel estimation
 - ii. Two-timescale channel estimation
 - iii. Non-stationary channel estimation
 - iv. Near-field beam training
 - v. RIS beamforming design
- Chapter 3: Advanced architectures for RIS
 - i. Active RIS
 - ii. Transmissive RIS
 - iii. User-centric RIS
 - iv. Wideband RIS
 - v. Holographic RIS


- Chapter 4: System-level simulation of RIS
 - i. System-level simulation setup
 - ii. Performance evaluation results
 - iii. Three operation modes for RIS
 - iv. RIS vs. network-controlled repeater (NCR)
 - v. Preliminary Exploration of Small Scale Channel Models
- Chapter 5: Trial tests of RIS
 - i. Trials in sub-6 GHz commercial networks
 - ii. Prototype systems testing in IMT-2030
 - iii. Test specifications for microwave anechoic chamber
- Chapter 6: Standardization of RIS
 - i. Precedence in 4G LTE era
 - ii. Possible strategy for RIS
- Chapter 7: Future trends of RIS
- Conclusions

Limit of RIS: "Multiplicative Fading" Effect



The RIS-aided reflection link suffers large-scale fading twice

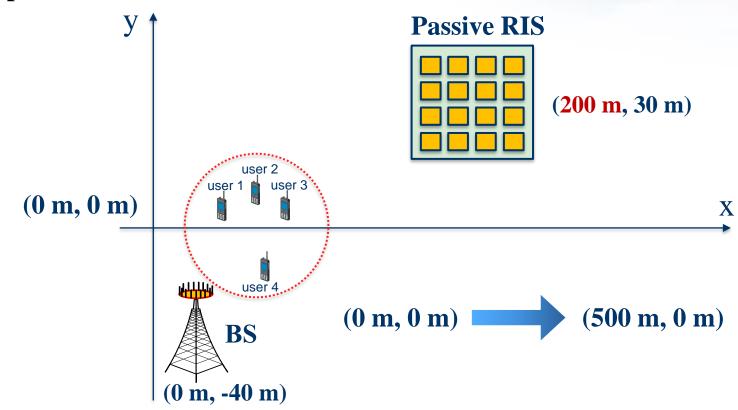
(a) Atypical scenario with strong direct link

(b) **Typical** scenario with weak direct link

Signal model: $y = (\mathbf{h}^H + \mathbf{\theta}^H \operatorname{diag}(\mathbf{f}^H)\mathbf{G})\mathbf{w}s + z$

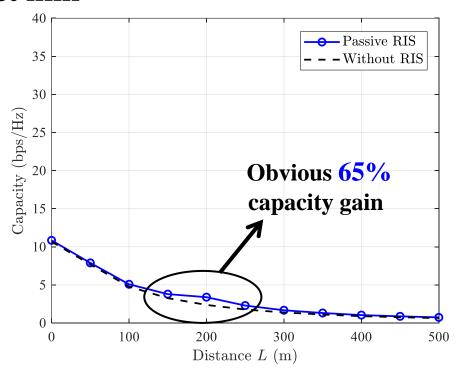
Product instead of summation

W. Tang, M. Chen, X. Chen, J. Dai, Y. Han, M. Di Renzo, Y. Zeng, S. Jin, Q. Cheng, and T. J. Cui, "Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement," *IEEE Trans. Wireless Commun.*, vol. 20, no. 1, pp. 421-439, Jan. 2021.


Example

System parameters

- > BS (equipped with 4 antennas, transmit power 10 mW)
- > RIS (equipped with 256 elements)
- **→ 4** User (equipped with 1 antennas)



Example

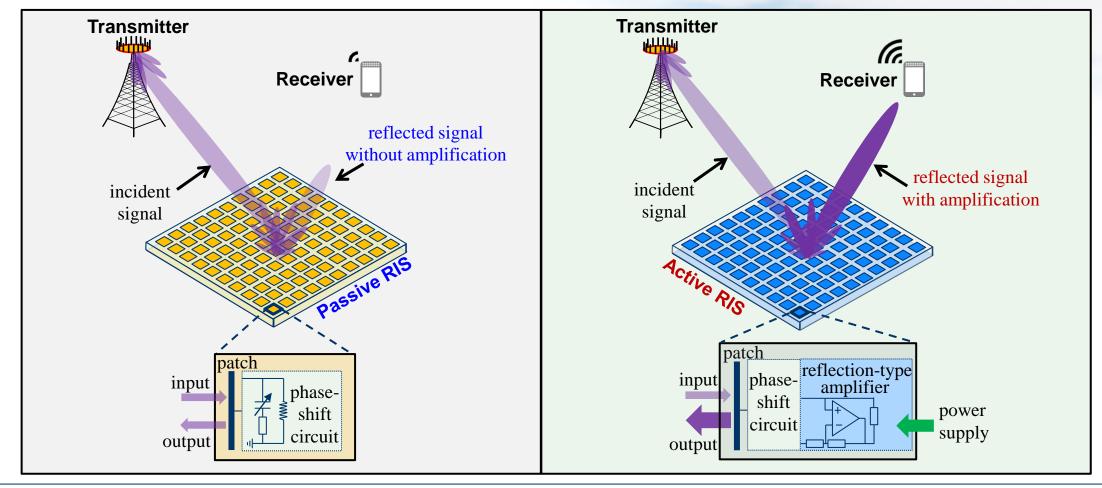
 Passive RIS can only achieve negligible capacity gain in typical scenarios with strong direct link

35 Negligible 3% capacity gain Capacity (bps/Hz) 10 --- Passive RIS - Without RIS 100 200 300 400 500 Distance L (m)

(a) Atypical scenario with strong direct link

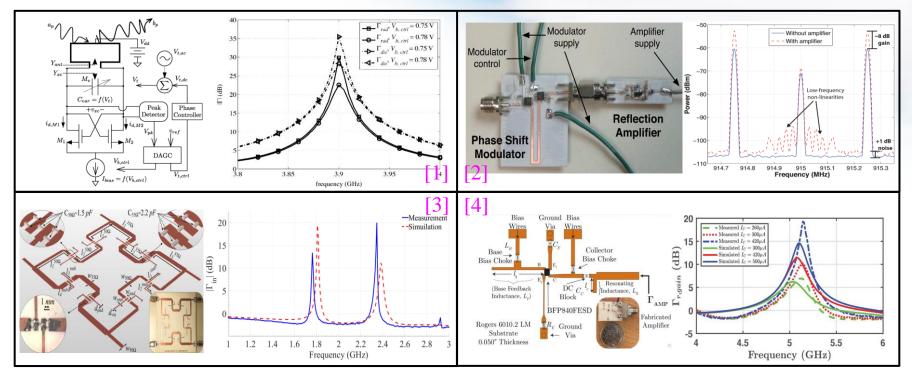
(b) Typical scenario with weak direct link

How to overcome the "multiplicative fading" effect?


Z. Zhang, L. Dai*, X. Chen, C. Liu, F. Yang, R. Schober, and H. V. Poor, "Active RIS vs. passive RIS: Which will prevail in 6G?," IEEE Trans. Commun., vol. 71, no. 3, pp. 1707-1725, Mar. 2023.

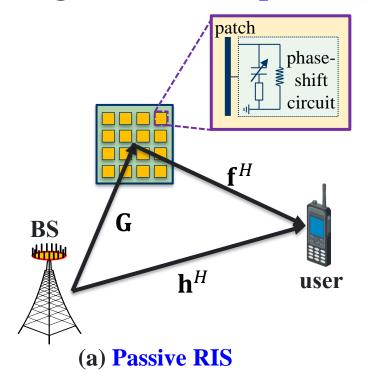
Concept of Active RIS

- Passive RIS: Reflect signals directionally without amplification
- Active RIS: Amplify the reflected signals using power amplifiers

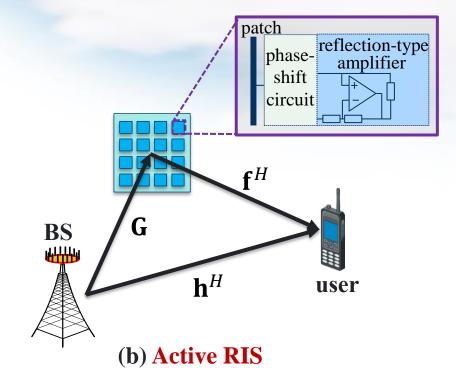


Realization of Active RIS

Feasible realizations of active reflection-type power amplifier

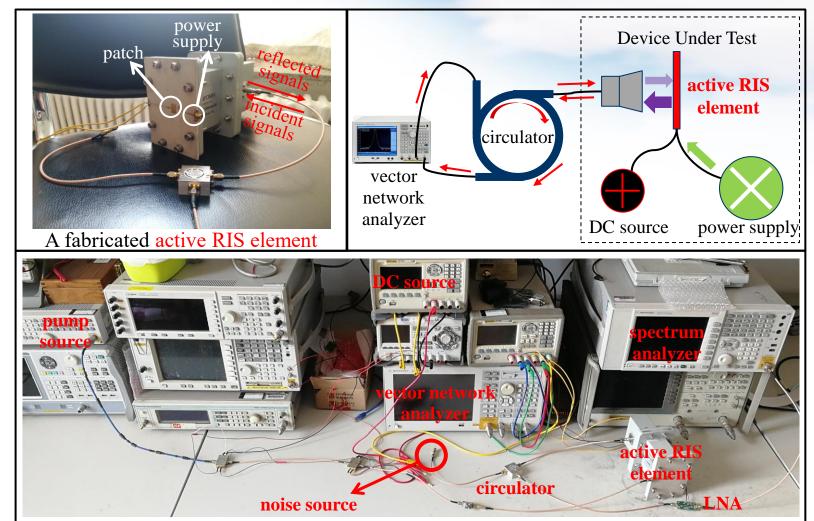

- [1] J. Bousquet, S. Magierowski and G. G. Messier, "A 4-GHz active scatterer in 130-nm CMOS for phase sweep amplify-and-forward," *IEEE Trans. Circuits Sys. I*, vol. 59, no. 3, pp. 529-540, Mar. 2012.
- [2] J. Kimionis, A. Georgiadis, A. Collado and M. M. Tentzeris, "Enhancement of RF tag backscatter efficiency with low-power reflection amplifiers," *IEEE Trans. Micro. Theory Tech.*, vol. 62, no. 12, pp. 3562-3571, Dec. 2014.
- [3] F. Farzami, S. Khaledian, B. Smida and D. Erricolo, "Reconfigurable dual-band bidirectional reflection amplifier with applications in Van Atta array," IEEE Trans. Micro. Theory Tech., vol. 65, no. 11, pp. 4198-4207, Nov. 2017.
- [4] P. Keshavarzian, M. Okoniewski and J. Nielsen, "Active phase-conjugating Rotman lens with reflection amplifiers for backscattering enhancement," *IEEE Trans. Micro. Theory Tech.*, vol. 68, no. 1, pp. 405-413, Jan. 2020.

Signal Model of Active RIS



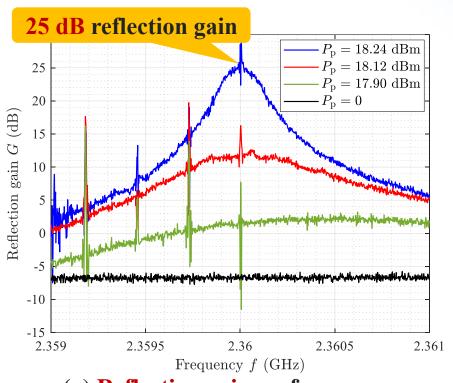
• Different signal models of passive RIS and active RIS:

$$y = (\mathbf{h}^H + \mathbf{f}^H \mathbf{\Theta}^H \mathbf{G}) \mathbf{w} s + z$$
Phase shift matrix

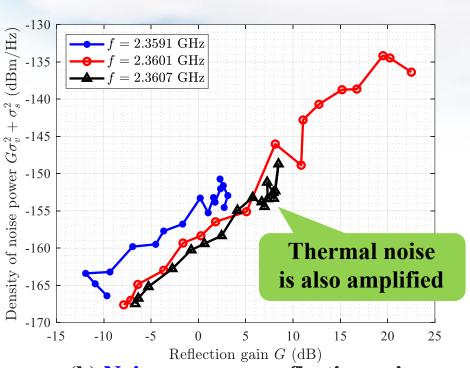

$$y = (\mathbf{h}^H + \mathbf{f}^H \mathbf{P} \mathbf{O}^H \mathbf{G}) \mathbf{w} s + \mathbf{f}^H \mathbf{P} \mathbf{n} + z$$
Additional noise introduced by active components

Validation Platform for Signal Model

Experimental measurements of a fabricated active RIS element



Validation Results



Measurement results

(b) Noise power vs. reflection gain

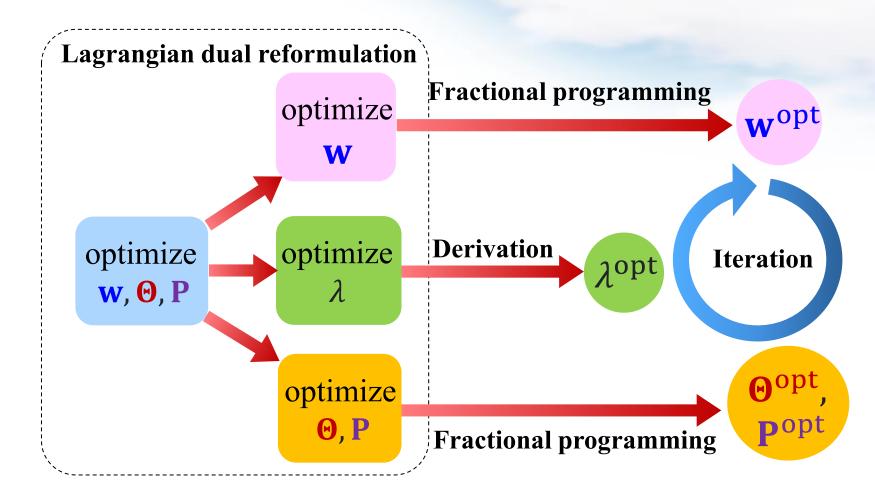
Verify the correctness of the proposed signal model

Z. Zhang, L. Dai*, X. Chen, C. Liu, F. Yang, R. Schober, and H. V. Poor, "Active RIS vs. passive RIS: Which will prevail in 6G?," IEEE Trans. Commun., vol. 71, no. 3, pp. 1707-1725, Mar. 2023.

Capacity Maximization of Active RIS

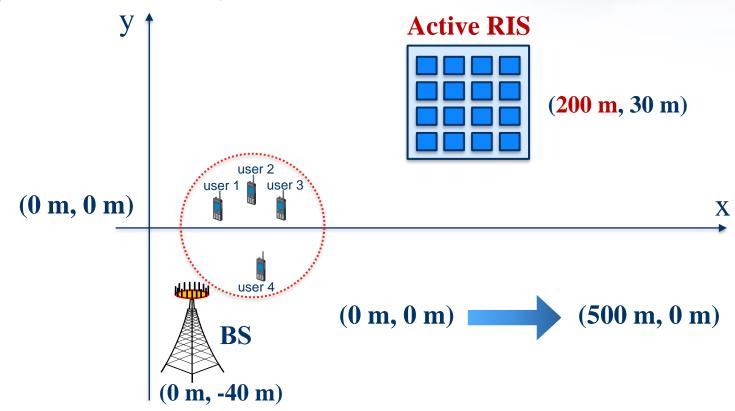
■ Three variables: BS precoding vector w, phase shift matrix 0, and amplification matrix P of active RIS

maximize
$$W, \Theta, P$$
 $R_{sum} = \sum_{k=1}^{K} \log_2(1 + \gamma_k)$ BS power constraint subject to $\sum_{k=1}^{K} ||\mathbf{w}_k||^2 \le P_{BS}^{\max}$ $\sum_{k=1}^{K} ||\mathbf{P}\Theta \mathbf{G} \mathbf{w}_k||^2 + ||\mathbf{P}\Theta||^2 \sigma_v^2 \le P_A^{\max}$ RIS power constraint


$$\gamma_{k} = \frac{\left| \left(\mathbf{h}_{k}^{H} + \mathbf{f}^{H} \mathbf{P} \mathbf{O}^{H} \mathbf{G} \right) \mathbf{w}_{k} \right|^{2}}{\sum_{j=1, j \neq k}^{K} \left| \left(\mathbf{h}_{k}^{H} + \mathbf{f}_{k}^{H} \mathbf{P} \mathbf{O}^{H} \mathbf{G} \right) \mathbf{w}_{j} \right|^{2} + \left\| \mathbf{f}_{k}^{H} \mathbf{P} \mathbf{O} \right\|^{2} \sigma_{v}^{2} + \sigma^{2}}$$

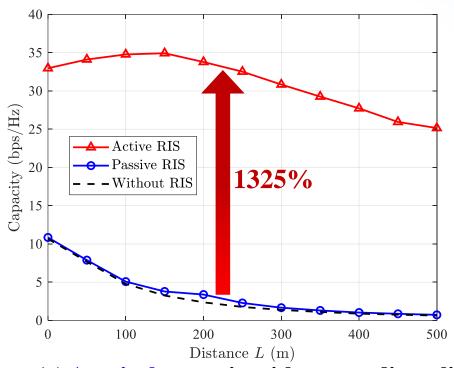
Proposed Joint Precoding Algorithm

 \bullet Optimizing w, Θ , and P alternatingly

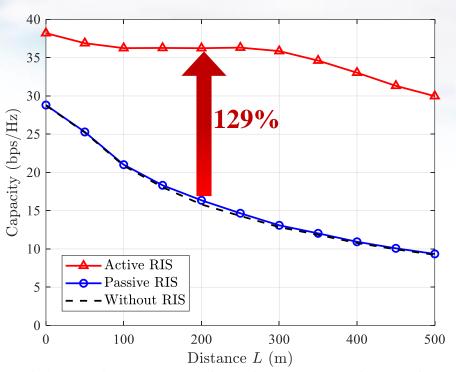

Simulation for Joint Precoding Design

Simulation parameters

- > BS (equipped with 4 antennas, transmit power 10 mW)
- > Active RIS (equipped with 256 elements, reflect power 10 mW)
- **→ 4** User (equipped with 1 antennas)



Simulation Results

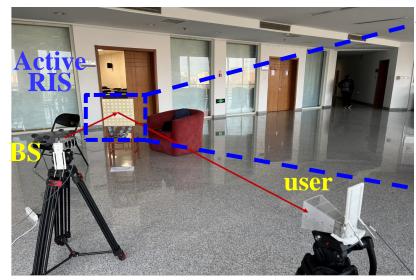


Active RIS can achieve noticeable capacity gain in typical communication scenarios

(a) Atypical scenario with strong direct link

(b) Typical scenario with weak direct link

Active RIS can overcome the "multiplicative fading" effect!

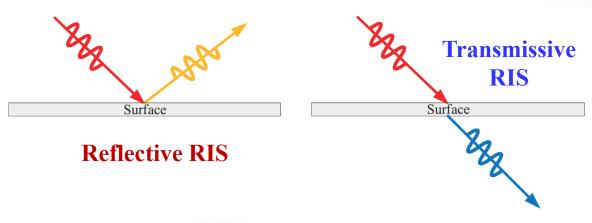

Z. Zhang, L. Dai*, X. Chen, C. Liu, F. Yang, R. Schober, and H. V. Poor, "Active RIS vs. passive RIS: Which will prevail in 6G?," IEEE Trans. Commun., vol. 71, no. 3, pp. 1707-1725, Mar. 2023.

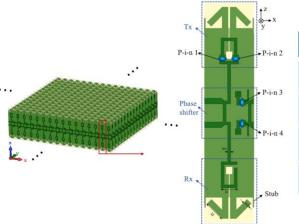
Active RIS: Experimental Measurements

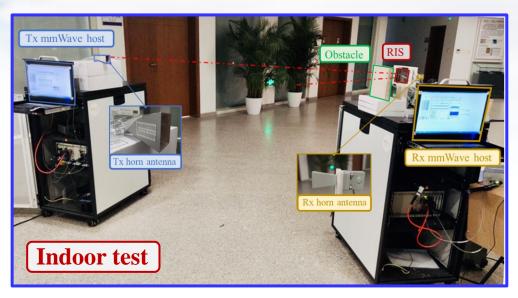
Experimental measurements based on a 8×8 active RIS

Parameter	Setting
Frequency	3.55 GHz
Bandwidth	40 MHz
Polarization	Vertical (BS)
	Horizontal (user)
BS-RIS distance	2 m
RIS-user distance	3.5 m
AoA	0°

8×8 active RIS


Device	Reflection AoD	Received Power	Throughput
Metal plate	150	-110 dBm	1.2 MHz
Active RIS	15°	-100 dBm	28.5 MHz
Metal plate	450	-105 dBm	1.5 MHz
Active RIS	45°	-95 dBm	30 MHz

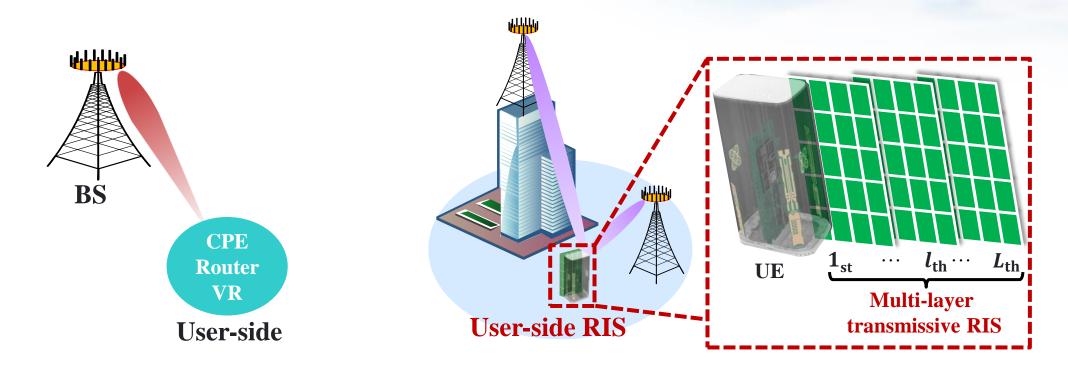

Transmissive RIS



• Produce the 16×16 mmWave transmissive RIS system and test the transmission gain

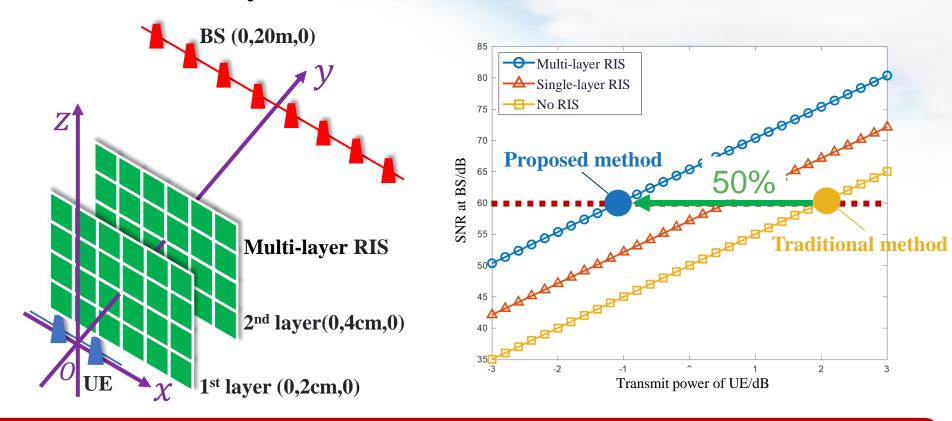
Parameter	Setting
Frequency	27 GHz
Bandwidth	800 MHz
BS-RIS distance	2 m
RIS-UE distance	0.05 m

Device	Throughput	Transmit power
No RIS	1024 Mbps	13.6 dBm
RIS	1024 Mbps	5.4 dBm


J. Tang, M. Cui, S. Xu, **L. Dai**, F. Yang, and M. Li, "Transmissive RIS for B5G communications: Design, prototyping, and experimental demonstrations," *IEEE Trans. Commun.*, vol. 71, no. 11, pp. 6605-6615, Nov. 2023.

Multi-Layer Transmissive RIS

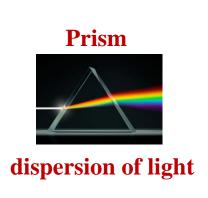
- It's impossible to deploy large-scale RIS at the user-side due to the limit of cost and size
- We propose multi-layer transmissive RIS to realize large-scale array at user-side with low cost and small size

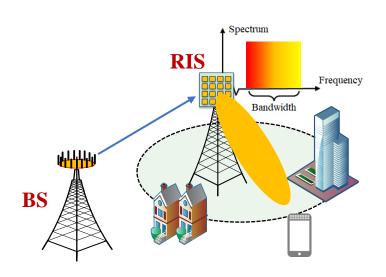

K. Liu, Z. Zhang, L. Dai*, and L. Hanzo, "Compact user-specific reconfigurable intelligent surfaces for uplink transmission," *IEEE Trans. Commun.*, vol. 70, no. 1, pp. 680-692, Jan. 2022.

Simulation Results

Performance of multi-layer transmissive RIS

Multi-layer transmissive RIS can save nearly 50% power for the user

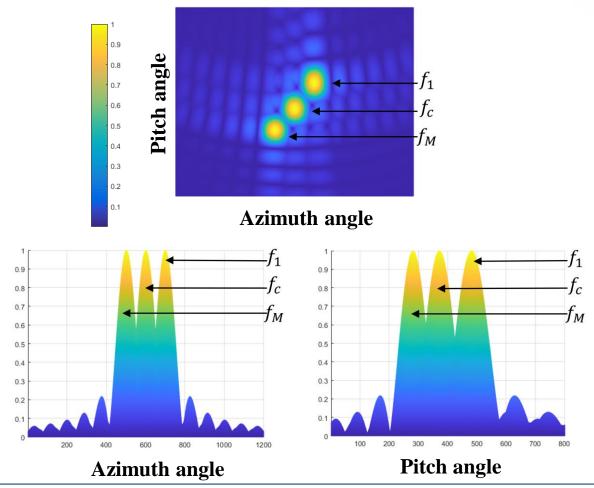

K. Liu, Z. Zhang, L. Dai*, and L. Hanzo, "Compact user-specific reconfigurable intelligent surfaces for uplink transmission," *IEEE Trans. Commun.*, vol. 70, no. 1, pp. 680-692, Jan. 2022.

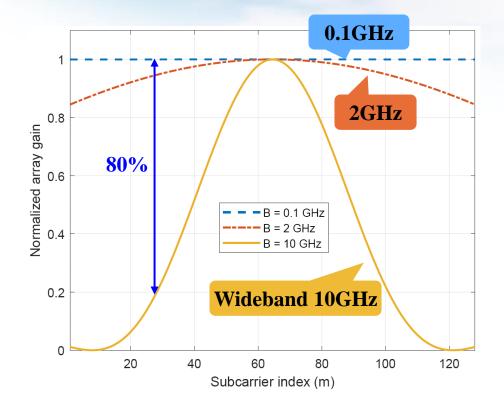

Beam Split Effect in Wideband RIS Systems

- ullet For narrowband, beamforming is generally designed according to the central carrier f_c
- In wideband systems, the beams at different frequencies will split towards different angles, where $f_c \sin \theta_0 = f \sin \theta$

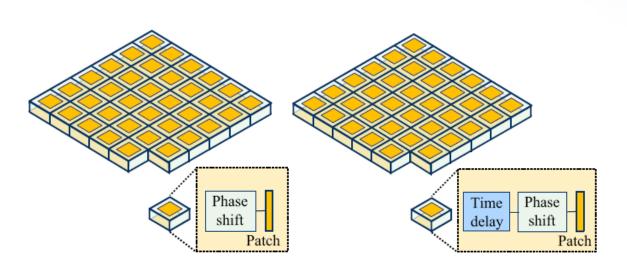
System parameters	Beam width	Beam split	Relative split
Carrier 30 GHz, bandwidth 2 GHz, RIS array 16×16	11.25°	3°	26%
Carrier 30 GHz, bandwidth 2 GHz, RIS array 60×60	3°	3°	100%
Carrier 100 GHz, bandwidth 20 GHz, RIS array 16×16	11.25°	9°	80%
Carrier 100 GHz, bandwidth 20 GHz, RIS array 60×60	3°	9°	300%

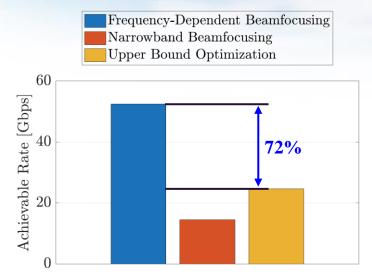
Wideband RIS introduces a severe beam split effect


W. Hao, F. Zhou, M. Zeng, O. A. Dobre, and N. Al-Dhahir, "Ultra wideband THz IRS communications: Applications, challenges, key techniques, and research opportunities," *IEEE Netw.*, vol. 36, no. 6, pp. 214–220, Jul. 2022.


Beam Split Effect in Wideband RIS Systems

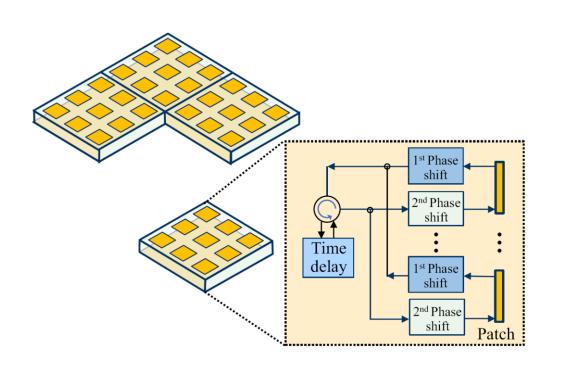
• The beam split effect induces the beams at different frequencies will split towards different directions, which will cause severe 80% performance loss

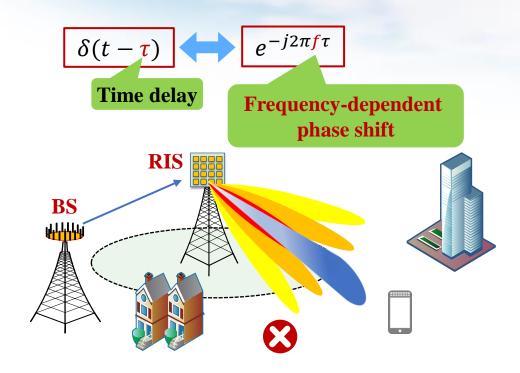



Existing Solutions

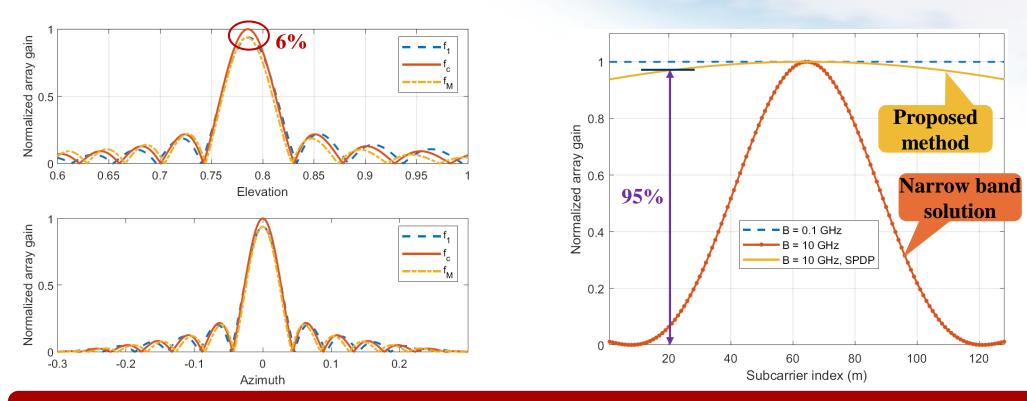
- RIS is usually equipped with frequency-independent phase-shifting circuits
 - > Sum-rate optimization: 72% performance loss
 - > Frequency-dependent hardware: cost and power consumption are too high to deploy

How to overcome the performance loss of the beam split effect of wideband RIS?


- [1] K. Dovelos, S. Assimonis, H. Ngo, B. Bellalta, and M. Matthaiou, "Intelligent reflecting surface-aided wideband THz communications: Modeling and analysis," in *Proc. 25th International ITG Workshop on Smart Antennas*, Sep. 2021.
- [2] J. An, C. Xu, D. W. K. Ng, C. Yuen, L. Gan, and L. Hanzo, "Reconfigurable intelligent surface-enhanced OFDM communications via delay adjustable metasurface," arXiv preprint arXiv:2110.09291, Oct. 2021.


Proposed Phase-Delay-Phase Architecture

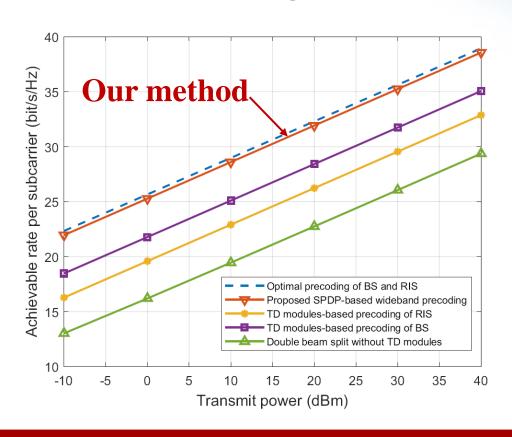
 A sub-connected phase-delay-phase architecture (SPDP)-based wideband precoding design is proposed to realize frequency-dependent precoding

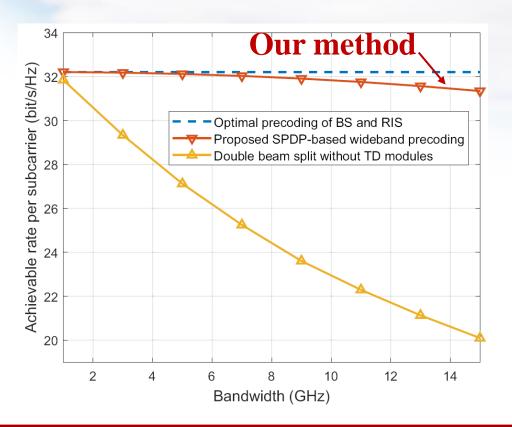

I. Mondal and N. Krishnapura, "A 2-GHz bandwidth, 0.25-1.7 ns true-time-delay element using a variable-order all-pass filter architecture in 0.13 um CMOS," *IEEE J. Solid-State Circuits*, vol. 52, no. 8, pp. 2180–2193, Aug. 2017.

Simulation Results

- Beamforming performance: Normalized array gain at different subcarriers
 - > The beam split effect of RIS is significantly alleviated by the proposed SPDP architecture

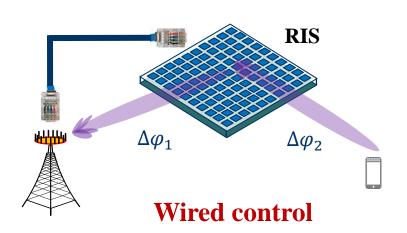
The proposed SPDP can serve as an effective wideband precoding solution

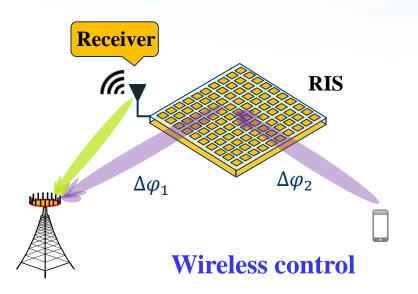

R. Su, L. Dai*, and D. W. K. Ng, "Wideband precoding for RIS-aided THz communications," IEEE Trans. Commun., vol. 71, no. 6, pp. 3592-3604, Jun. 2023.


Simulation Results

Wideband beamforming based on SPDP RIS can overcome the problem of beam split

Joint wideband precoding achieves sub-optimal achievable rate in a large bandwidth

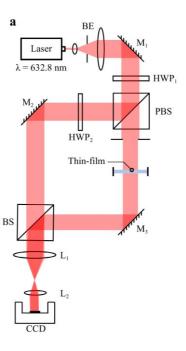

R. Su, L. Dai*, and D. W. K. Ng, "Wideband precoding for RIS-aided THz communications," IEEE Trans. Commun., vol. 71, no. 6, pp. 3592-3604, Jun. 2023.


Challenge: Complex Control Process

- RIS is usually controlled by the base station
 - **>** Complex control process: Channel estimation→ Precoding→Control signal for RIS
 - **Wired control:** High cost on laying out cables
 - Wireless control: Extra receiver on RIS

RIS controlled by the BS is difficult to be massively deployed

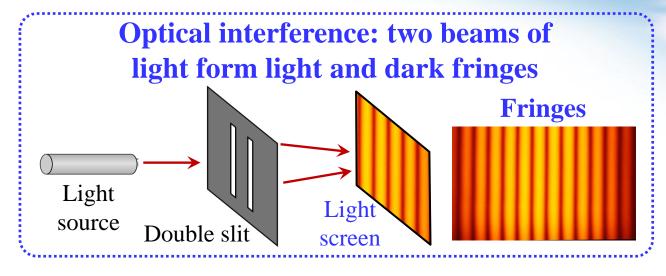
The Idea of Holography

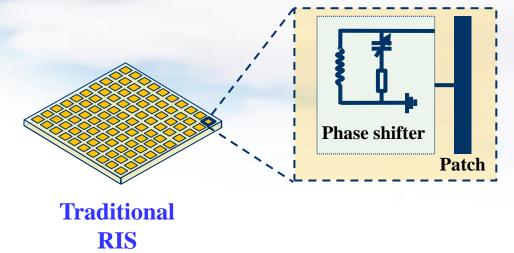


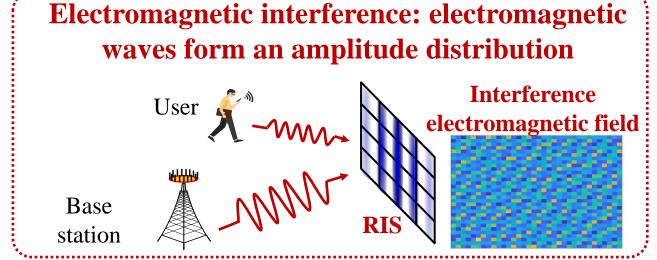
Holographic imaging

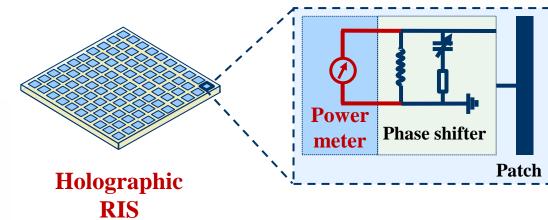
- > The physical principle of holographic imaging is optical interference
- > Restoring 3D information of objects through algorithms

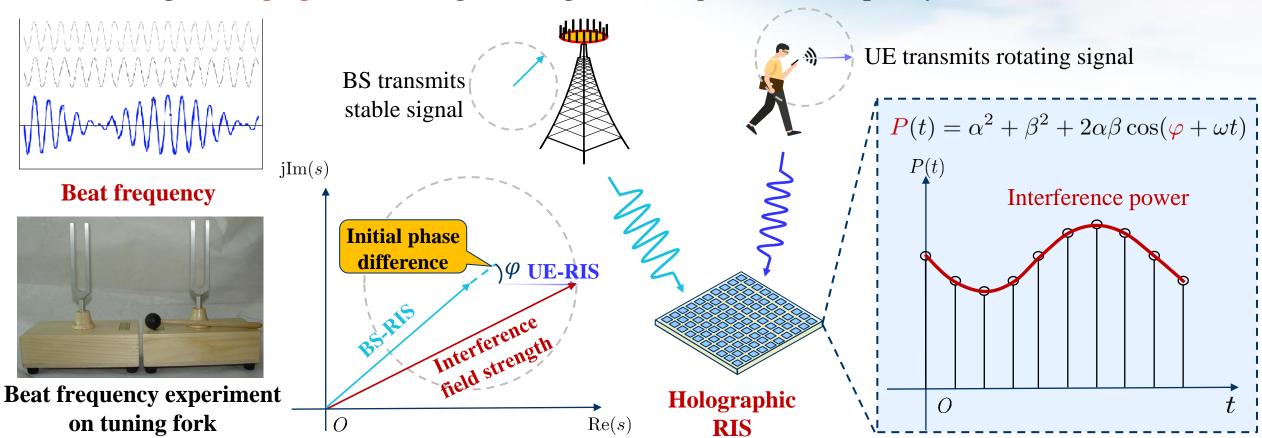
Dennis Gabor Nobel Prize in Physics(1971)


Basic principle of holography



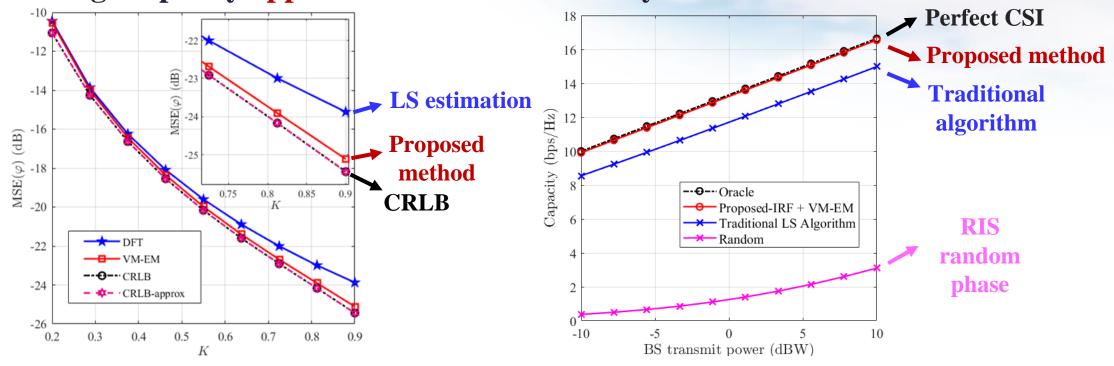

From Holographic Imaging to Holographic RIS





Beat Frequency

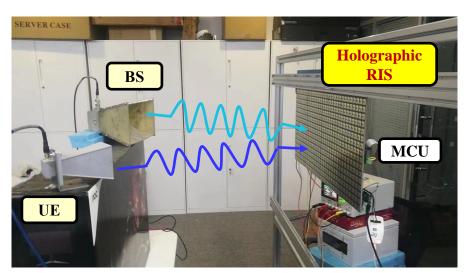
- How holographic RIS detects channel phase ?
 - **Beat frequency phenomenon** turns rapid oscillations into slowly changing envelope fluctuations
 - Using rotating sign method to generating electromagnetic beat frequency

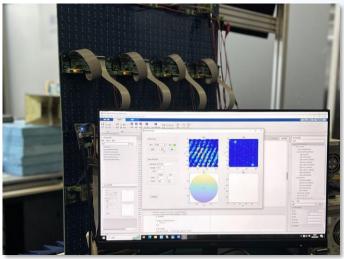


Simulation Results

- MSE of phase estimation approach CRLB
- The average capacity approaches traditional RIS system with known CSI

Holographic RIS can automatically sense the channel and perform beamforming


J. Zhu, K. Liu, Z. Wan, L. Dai*, T. J. Cui, and H. V. Poor, "Sensing RISs: Enabling dimension-independent CSI acquisition for beamforming," *IEEE Trans. Inf. Theory*, vol. 69, no. 6, pp. 3795-3813, Jun. 2023.


Hardware Design and Test

- Design 32×32 Holographic RIS and observe the effect of electromagnetic interference
- Estimate the location of user with proposed algorithm

Holographic RIS hardware system

Visual electromagnetic interference

Autonomous closed-loop tracking of mobile users

Verified the software and hardware joint design for holographic RIS

Contents

- Chapter 1: Introduction
 - i. Background of RIS
 - ii. RIS fundamentals
 - iii. Hardware design and prototypes
- Chapter 2: Advanced algorithms for RIS
 - i. Compressed sensing based channel estimation
 - ii. Two-timescale channel estimation
 - iii. Non-stationary channel estimation
 - iv. Near-field beam training
 - v. RIS beamforming design
- Chapter 3: Advanced architectures for RIS
 - i. Active RIS
 - ii. Transmissive RIS
 - iii. User-centric RIS
 - iv. Wideband RIS
 - v. Holographic RIS

- Chapter 4: System-level simulation of RIS
 - i. System-level simulation setup
 - ii. Performance evaluation results
 - iii. 3 operation modes for RIS
 - iv. RIS vs. network-controlled repeater (NCR)
 - v. Preliminary Exploration of Small Scale Channel Models
- Chapter 5: Trial tests of RIS
 - i. Trials in sub-6 GHz commercial networks
 - ii. Prototype systems testing in IMT-2030
 - iii. Test specifications for microwave anechoic chamber
- Chapter 6: Standardization of RIS
 - i. Precedence in 4G LTE era
 - ii. Possible strategy for RIS
- Chapter 7: Future trends of RIS
- Conclusions

System-level Simulation Setup: Antenna Model (1)

RIS is a reflective or transmissive panel composed of a large number of passive elements. Each element can be phase/amplitude/polarization tuned separately. The antenna pattern of a RIS panel is the superimposition of patterns of all of its individual elements.

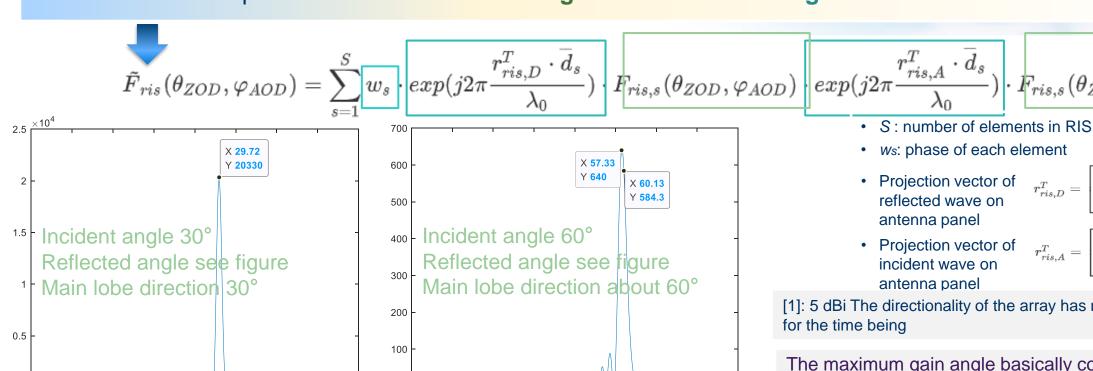
□ RIS antenna modeling

- The maximum gain of an active antenna element is often assumed 8 dBi → As a passive device, manufacturing of RIS antenna is different from active antennas.
 For RIS of half wavelength spacing, the antenna gain is assumed 5 dBi. Thus,
 G_{E,max} = 5 dBi_o
- As a reflective device, the antenna pattern of RIS should conform to mirror characteristics and follow Snell' s law when RIS is powered off.

Radiation power pattern of a single antenna (3GPP TR 38.901)

Parameter	Values	
Vertical cut of the radiation power pattern (dB)	$A''_{dB}(\theta'', \phi'' = 0^{\circ}) = -\min\left\{12\left(\frac{\theta'' - 90^{\circ}}{\theta_{3dB}}\right)^{2}, SLA_{\nu}\right\}$ with $\theta_{3dB} = 65^{\circ}, SLA_{\nu} = 30 \text{ dB and } \theta'' \in [0^{\circ}, 180^{\circ}]$	
	with $O_{3dB} = 0.5$, $SLA_V = 30$ dB and $O \in [0, 100]$	
Horizontal cut of the radiation power pattern (dB)	$A_{\text{dB}}''(\theta'' = 90^{\circ}, \phi'') = -\min \left\{ 12 \left(\frac{\phi''}{\phi_{\text{3dB}}} \right)^{2}, A_{\text{max}} \right\}$ with $\phi_{\text{3dB}} = 65^{\circ}, A_{\text{max}} = 30 \text{ dB and } \phi'' \in [-180^{\circ}, 180^{\circ}]$	θ, ϕ are azimuth and elevation angles
3D radiation power pattern (dB)		the incident
Maximum directional gain of an antenna element $G_{E,max}$	8 481	igle increases, the in will decay

Hardw Studio with in corres has a phase


Hardware simulation (CST Studio Suite): incident beam with incident angle 30°, corresponding reflected beam has a 30° mean lobe (untuned phase)

System-level Simulation Setup: Antenna Model (2)

- According to antenna model in 3GPP TR38.901, RIS antenna model can be modified as:
 - > The maximum gain of the reflection pattern of a single array is set to 5 dBi [1]
 - > RIS antenna pattern: consider both steering vector and antenna gain in incident and reflected directions

The incident angle is 30°, and the RIS reflected pattern (no phase tuned)

The incident angle is 60°, and the RIS reflected pattern (no phase tuned)

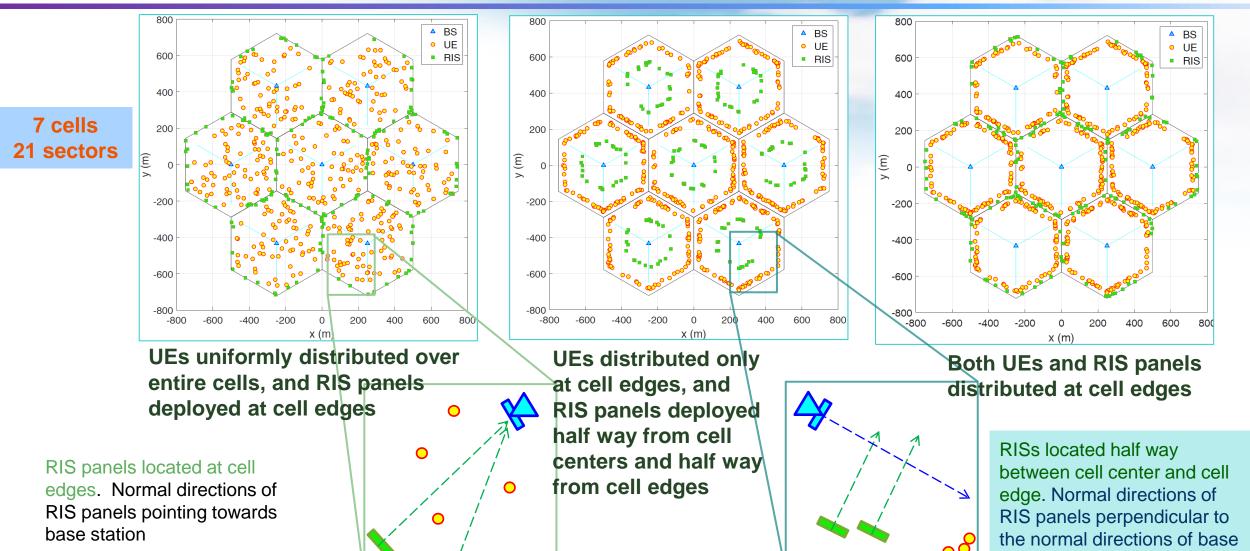
- $sin\theta_{ZOD}cos\theta_{AOD}$ $sin\theta_{ZOD}sin\theta_{AOD}$
- $sin heta_{ZOA} cos heta_{AOA}$ $sin heta_{ZOA} sin heta_{AOA}$ $cos\theta_{AOA}$

[1]: 5 dBi The directionality of the array has not been considered

The maximum gain angle basically conforms to Snell's law, and as the incident angle increases, the maximum reflection gain decreases, consistent with hardware characteristics.

System-level Simulation Setup: Large-scale Channel Model

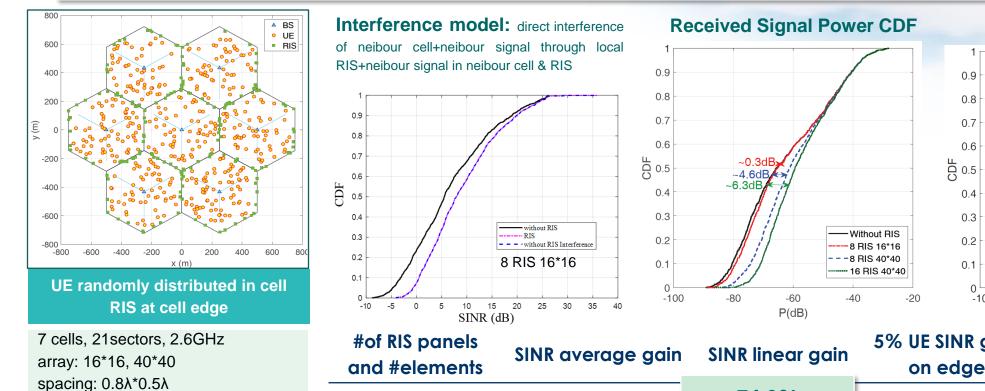
□ Large-scale channel model for RIS

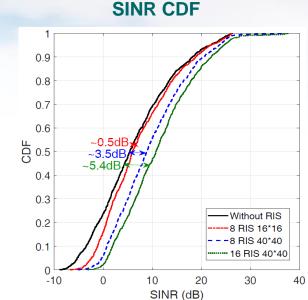

- ➤ BTS-RIS channel and RIS-UE channel. Under far field conditions, based on 38.901 model, a large-scale channel model of two link segments is introduced to calculate the received signal power.
- Received signal power at a UE is composed of signal strength of BTS-UE (direct) link and of BTS-RIS-UE (concatenated) link. The RSRP calculation for the direct link reuses the convention model. Received signal power of the cascaded link is determined by pathloss, shadow fading, and antenna gain of BTS-RIS and RIS-UE links

$$P_{RIS_{l}} = PL_{BS-RIS_{l}} \cdot PL_{RIS_{l}-UE} \cdot SF_{BS-RIS_{l}} \cdot SF_{RIS_{l}-UE} \sum_{u=1}^{U} \left| \sum_{k=1}^{K} \alpha_{2,l,k}^{far} \cdot e^{j\Phi_{l,k}} \cdot \alpha_{1,l,k}^{far} \right|^{2} \cdot \frac{TX_{power}}{U}$$

$$\alpha_{1,l,k}^{far} = \begin{bmatrix} F_{\theta}(\theta_{ZOA_{RIS}}, \varphi_{AOA_{RIS}}) \\ F_{\varphi}(\theta_{ZOA_{RIS}}, \varphi_{AOA_{RIS}}) \end{bmatrix}^{T} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} F_{\theta}(\theta_{ZOD_{BS}}, \varphi_{AOD_{BS}}) \\ F_{\varphi}(\theta_{ZOD_{BS}}, \varphi_{AOD_{BS}}) \end{bmatrix} \exp \left(j2\pi \frac{\hat{r}_{ZOA_{RIS},AOA_{RIS}}^{T} \cdot \bar{d}_{l,k}}{\lambda} \right)$$
 Phase difference due to incident angle the pattern of antenna element of BS
$$\alpha_{2,l,k,u}^{far} = \begin{bmatrix} F_{\theta}(\theta_{ZOA_{UE}}, \varphi_{AOA_{UE}}) \\ F_{\varphi}(\theta_{ZOA_{UE}}, \varphi_{AOA_{UE}}) \end{bmatrix}^{T} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} F_{\theta}(\theta_{ZOD_{RIS}}, \varphi_{AOD_{RIS}}) \\ F_{\varphi}(\theta_{ZOD_{RIS}}, \varphi_{AOD_{RIS}}) \end{bmatrix} \exp \left(j2\pi \frac{\hat{r}_{ZOD_{RIS},AOD_{RIS}}^{T} \cdot \bar{d}_{l,k}}{\lambda} \right)$$
 Phase difference corresponding to reflected angle the pattern of antenna element of RIS

System-level Simulation Setup: Network Topology


station antenna panels


Performance Evaluation Results (1)

Although causing certain interference to adjacent cells and other RISs in same cell; RIS can significantly improve system performance; Higher gains observed with increased #elements per RIS panel and/or #RIS panels per sector

5% UE SINR gain 5% SINR linear on edge gain 74.9% 169.9% 8 RIS 16*16 2.43 dB 4.31 dB 511.8% 8 RIS 40*40 7.87 dB 6.47 dB 343.7% 16 RIS 40*40 10.6 dB 7.20 dB 1036.5% 425.1%

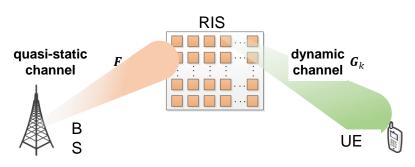
Single polarization

RIS height 15 m

RIS in each sector: 8,16

BS height 25 m UE height 1.5 m

3 Operation Modes of RIS (1)



Compared to RIS transparent to mobiles, operation of non-transparent RIS requires more advanced designs of channel estimation and feedback.

3 operation modes of RIS

1 passive static RIS
2 semi-static controllable RIS
5 jixed beam
2 semi-static beam
3 Dynamic RIS
6 real-time dynamic beam
7 non-transparent channel

Two dynamic modes:

- **Beam sweeping** (transparent to mobiles): RIS based on fixed codebook, generate fixed beams for coverage
- UE-specific beamforming (maybe non-transparent): based on separate or cascaded channel state information, to jointly design beamforming for both RIS and BS

3 Operation Modes of RIS (2)

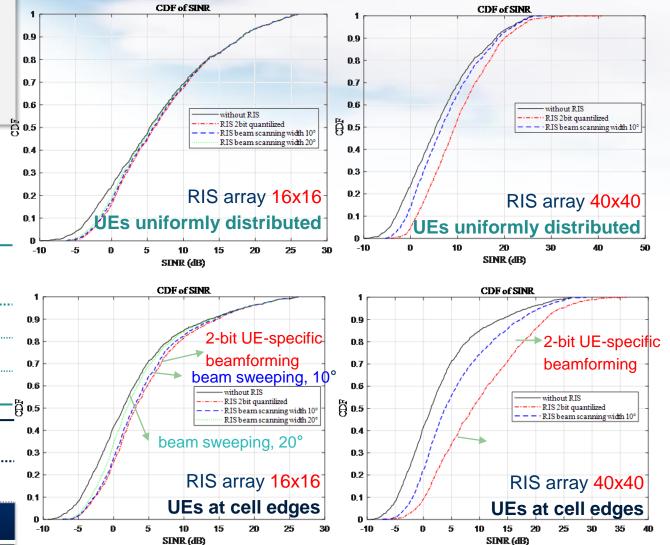
- For small-size RIS, beam sweeping interval is equivalent to beam-width, beam sweeping has similar performance as UEspecific beamforming.
- For large-size RIS, performance beneiti of UE-specific beamforming is more significant
- **UE-specific beamforming** (non-transparent)
- Beam sweeping (transparent to mobile)

Beam

Array

Random UE

5

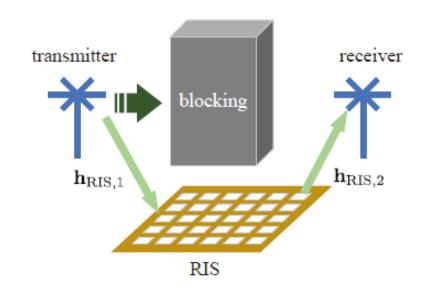

Edge

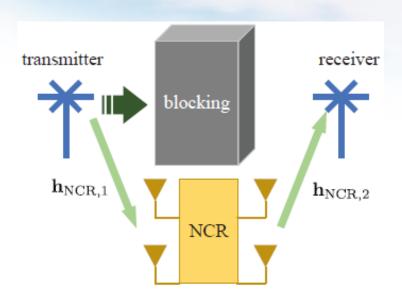
- 16x16: beam-width = 10° (vertical & horizontal)
- 40x40: beam-width = 5° (vertical & horizontal)

Allay	sweeping	gain	3 % edge OL gaill	
16*16	10° interval	0.22dB	0.76dB	ı
16*16	20° interval	0.41dB	1.46dB	. 1
40*40	10° interval	2.4 dB	7.4dB	· 法
				8
RIS	Arrav	Beam sweepi	ng Average gain	•
RIS	Array	Beam sweepi	ng Average gain	
	Array *16	Beam sweepi 20° interval		

Average

5% edge LIF gain




RIS vs. Network-controlled Repeater (NCR) (1)

Compared with NCR, the system model of RIS can be different in two aspects: 1) power amplification ability; 2) noise characteristic.

- Power amplification ability: RIS only reflect incoming signal, NCR can magnify the incoming signal
- Noise characteristic: RIS does not introduce noise, NCR introduces and magnifies noise

RIS vs. Network-controlled Repeater (NCR) (2)

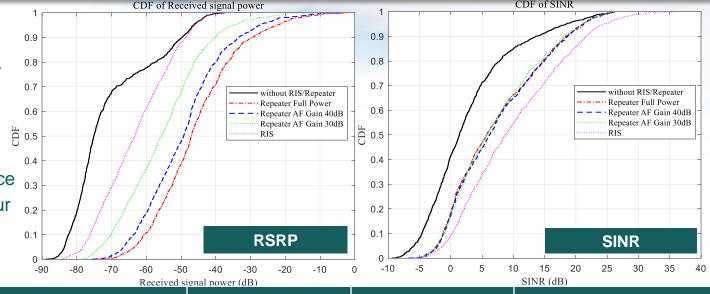
NCR vs. RIS: in low frequency, NCR brings higher gain to RSRP compared to RIS, but with worse SINR due to amplification of interference and noise

NCR amplifies signal, interference & noise with fixed gain

• RSRP (reference signal received power):

NCR-UE RSRP = NCR AF Gain+BTS-NCR RSRP - NCR-UE Couplingloss

total RSRP = BTS-UE RSRP+ NCR-UE RSRP


• SINR (linear):

SINR = total RSRP/(UE received noise + direct link interference + neighbor BTS-neighbor Repeater-UE interference+neighbour BTS-service Repeater-UE amplified interference) where NCR AF Gain adjustable, but NCR AF Gain + BTS-NCR RSRP + BTS-NCR noise+ neighbor BTS-Repeater RSRP interference

- linear ≤ Relay Tx Power

System level simulation parameters:

- UE at cell edge, 4 NCR/RIS per sector
- RIS size: 40*40
- NCR antenna size: 4*8, AF Gain 30/40dB
- Frequency: 2.6 GHz

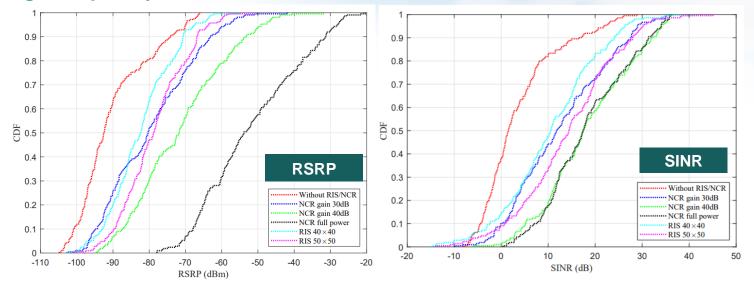
	Avg. gain in RSRP	Avg. gain in SINR	Percentage of repeater power exceeding max
Repeater Full Power	24.6 dB	4.37 dB	
Repeater AF Gain 40 dB	21.4 dB	4.57 dB	≈ 45%
Repeater AF Gain 30 dB	15.1 dB	4.34 dB	≈9%
RIS 40*40, 2-bit quantization	7.4 dB	7.08 dB	

RIS vs. Network-controlled Repeater (NCR) (3)

NCR v.s. RIS: in high frequency band, RIS can form more accurate beams compared to NCR

Both NCR and RIS perform beamforming in high frequency

• NCR


beam sweeping

• RIS

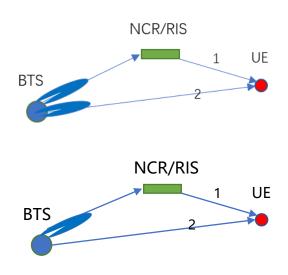
UE-specific beamforming

System level simulation parameters:

- UE at cell edge, 4 NCR/RIS per sector
- RIS antenna size: 40*40
- NCR antenna: 4*8, AF Gain 30/40dB
- Frequency: 26 GHz

Performance gap between RIS and NCR is smaller in high frequency than low frequency, due to smaller interference via beamforming at NCR

RIS vs. Network-controlled Repeater (NCR) (4)



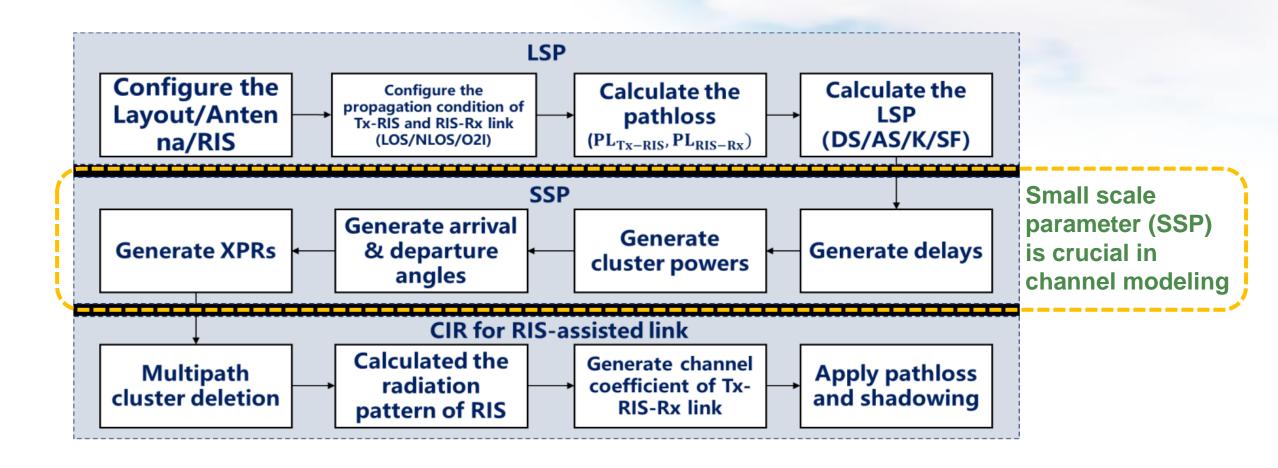
Beam design

BS: sweeping. NCR: beam sweeping. RIS: UE-specific beamforming

- In high-frequency, BS performs beam sweeping
- Signal power via RIS equivalent to direct link without RIS
- Signal power via NCR much stronger than direct link

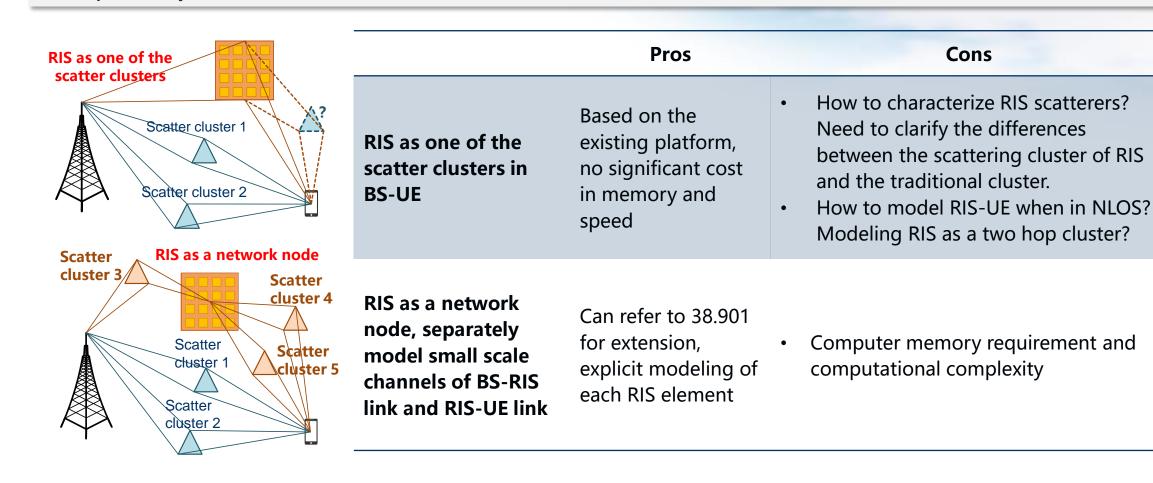
Optimal chain w/o RIS/dBm	Optimal chain with RIS/dBm	Relative strength/dB
-70.22	-75.01	4.79
-94.56	-87.32	-7.23
-81.62	-92.87	11.25
-94.96	-72.32	-22.64
-103.39	-82.18	-21.20

Optimal chain w/o	Optimal chain with	Relative
NCR/dBm	NCR/dBm	strength/dB
-103.60	-86.67	-16.92
-94.04	-57.99	-36.04
-100.92	-46.82	-54.10
-97.52	-82.88	-14.63
-92.91	-78.78	-14.12


Proposal: In low frequency, BS can perform beamforming aiming both RIS and UE simultaneously. In high frequency, BS can consider 3 beamforming schemes: 1) to UE, 2) to RIS, 3) both UE and RIS simultaneously.

Preliminary Exploration of Small Scale Channel Models (1988)

Fundamentals of channel modeling



Preliminary Exploration of Small Scale Channel Models (2)

Two possible approaches: 1) RIS as one of the scatters in BS-UE. 2) RIS as a network node, to separately model BS-RIS link and RIS-UE link

Preliminary Exploration of Small Scale Channel Models (3)

(mirror

Phase

reflection

Consider method 2: RIS as a network node

parameters	value
clusters	12
RIS elements	256
BS elements	8
UE elements	4
RB number	50

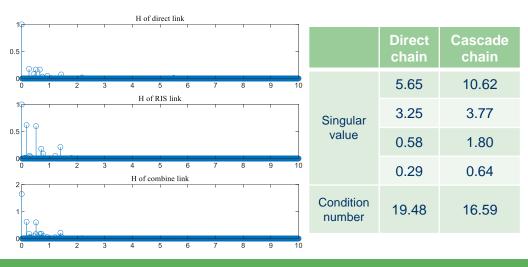
System level simulation platform extracts channel data (two hop use 38.901 model)

T domain BS-F domain BS-**RIS** channel T domain RIS-**UE** channel

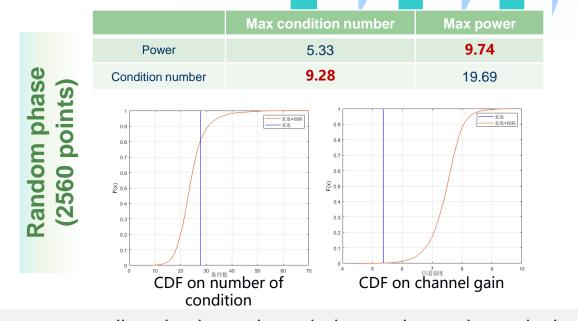
RIS channel F domain RIS-**UE** channel

cascaded F domain channel

cascaded T domain channel


domain channel add

domain channel add


singula value

Time domain BS-UE channel

phase

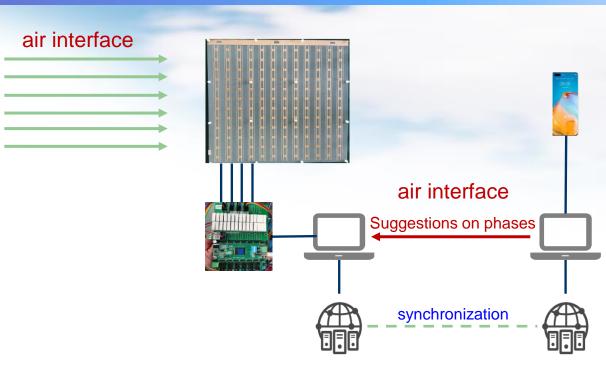
Counted in direct link, increasing cascaded link will change singular value and number of condition. Changing RIS element phase will change the condition number and received power of the combined channel

Accurate small scale channel needed to evaluate phase design to increase channel capacity

Outline

- Chapter 1: Introduction
 - i. Background of RIS
 - ii. RIS fundamentals
 - iii. Hardware design and prototypes
- Chapter 2: Advanced algorithms for RIS
 - i. Compressed sensing based channel estimation
 - ii. Two-timescale channel estimation
 - iii. Non-stationary channel estimation
 - iv. Near-field beam training
 - v. RIS beamforming design
- Chapter 3: Advanced architectures for RIS
 - i. Active RIS
 - ii. Transmissive RIS
 - iii. User-centric RIS
 - iv. Wideband RIS
 - v. Holographic RIS

- Chapter 4: System-level simulation of RIS
 - i. System-level simulation setup
 - ii. Performance evaluation results
 - iii. 3 operation modes for RIS
 - iv. RIS vs. network-controlled repeater (NCR)
 - v. Preliminary Exploration of Small Scale Channel Models
- Chapter 5: Trial tests of RIS
 - i. Trials in sub-6 GHz commercial networks
 - ii. Prototype systems testing in IMT-2030
 - iii. Test specifications for microwave anechoic chamber
- Chapter 6: Standardization of RIS
 - i. Precedence in 4G LTE era
 - ii. Possible strategy for RIS
- Chapter 7: Future trends of RIS
- Conclusions


RIS Test Configuration: 2.6 GHz

RIS parameters:

- Frequency: 2.6 GHz (bandwidth = 200MHz)
- •Number of RIS sub-panels: 4*4 = 16
- •Number of elements per RIS panel: 16*16 = 256
- Phase quantization (2-bit): $b_i \in \mathcal{S} \triangleq \{0, e^{i\frac{\pi}{2}}, e^{i\frac{2\pi}{2}}, e^{i\frac{3\pi}{2}}, e^{i\frac{4\pi}{2}}\}$

RIS phase optimization:

- Data acquisition at synchronized single terminal
- Running algorithm and output optimized phases
- RIS to form the reflected pattern based on the optimal phases of elements

Optimal Incident Angle Test

Purpos e

Performance evaluation of RIS on coverage, perception, etc. at different incident angles, including phase optimization validation at different incident angles

Basic configuration: 4*4 sup-panel, fixed position terminal close to weak coverage area **Test Points:**

Preset conditi ons

- a) 5G weak coverage, large area, no serious obstruction;
- b) suitable signal entry in target area, suitable RIS deployment point near the entry: visible host station and coverage target location, covered by main beam direction, **Test terminal**: 1 NR test terminal
- 1. No RIS. Test terminal for **fixed-point and drive test**. FTP traffic → benchmarks
- 2. With RIS. Adjust the incident angle of RIS from cell signal to 0 degrees.
 - 2.1 No power and no phase change (similar to mirror reflection). Test terminal for **fixed-point and drive test**. FTP traffic.
 - 2.2 RIS use random phase. Test terminals for **fixed-point and drive test**. FTP traffic
 - 2.3 Introduce CondMean+ phase optimization algorithm. Test terminals for **fixed-point and drive test**. FTP traffic.
- 3. Use RIS. Adjust the incident angle of RIS from cell signal. Then repeat step 2.1/2.2/2.3 to record the test results.

Data record

Test

proced

ure

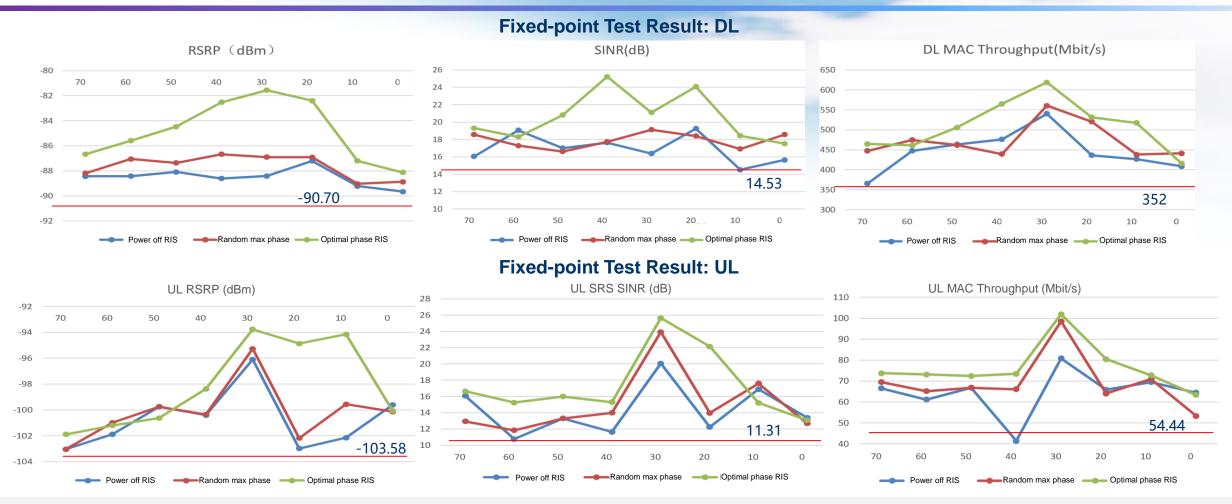
d 2.

Expecte d results

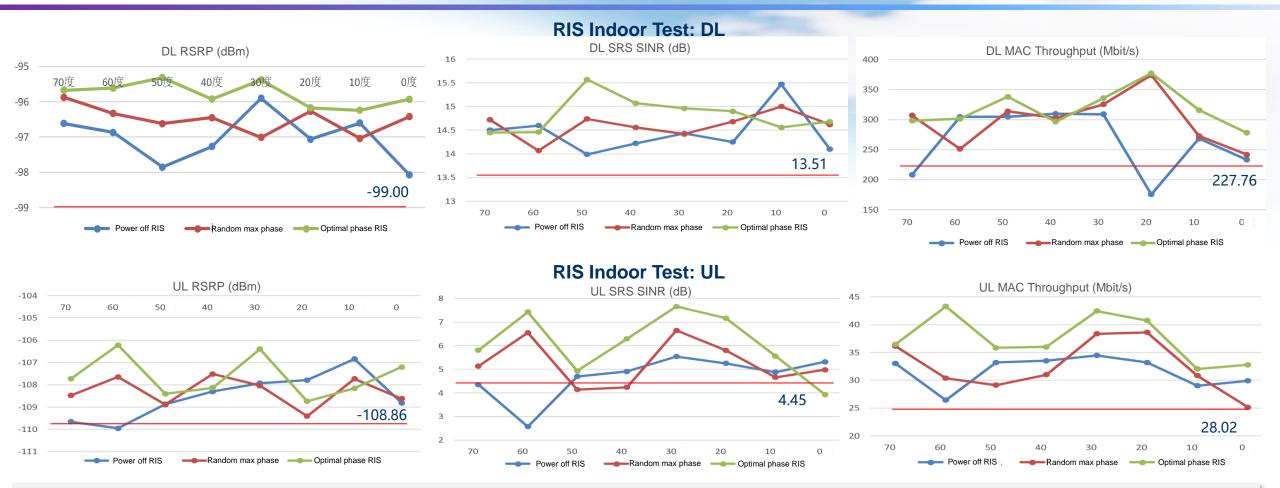
- 1. Record test data and network management tracking data during testing
- 2. To focus on upstream and downstream RSRP, SINR, and rate changes.

Explore the optimal incident angle setting scheme.

Compare different phase-finding algorithm gain in different incident angle.


◆ Fixed-point test position: distance between UE and RIS ≈ 49m

Optimal Incident Angle Test: Fixed-point Test

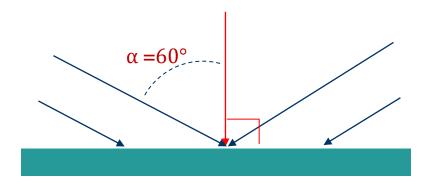

Observation 1: 30° can achieve optimal RSRP & rate gain for both UL & DL.

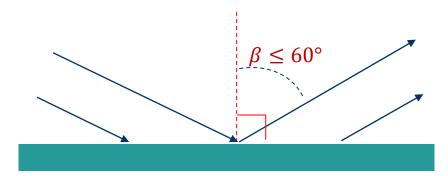
Observation 2: UL & DL gains are comparable, channel reciprocity with RIS can be maintained in TDD systems

Optimal Incident Angle Test: Range Test

Observation 3: The optimal DL RSRP observed at 50°, while the optimal UL RSRP observed at 30°.

Observation 4: Optimal gains may happen at different angles between fixed-point and drive tests.


Optimal Incident Angle Test



☐ Theoretical analysis shows that when other conditions are fixed (arrival electrical level, baseline power, direction angle, etc.) and only the incident angle is changed, the incident angle affects the energy intensity at RIS. It is recommended that the incident angle be less than 60°.

Incident angle $\alpha = \pm 60^{\circ}$, 50% of the area at 90 degrees of equivalent vertical incidence

Based on TDD channel reciprocity, it is recommended that the incident angle and reflection angle (the angle β between RIS normal line and UE) should not exceed 60 °

Proposal 1: Based on technical principles, engineering deployment, and actual network measurements, the optimal gain can be reached at 30° according to the test in this scenario.

Trial in 5G Commercial Network @2.6 GHz: Test Configuration

RIS maximum scan angle configuration

Horizontal/vertical Horizontal/vertical Horizontal

incident angle	reflected angle	beam width	beam width
0°	±45°	7°	3.5°
15°	30 °~ -60°	/	/
30°	15° ~ -75°	/	/
45°	0° ~ -75°	7°	5.3°
60°	0° ~ -60°	1	/

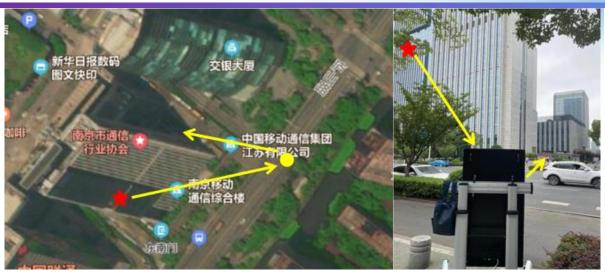
BS parameters

Test items	Transmit power	RRU type	Antenna model	Downtilt	Direction angle	Height
Outdoor cover indoor undertower coverage	327W	64 channel	Huawei	9°/10°	60°	46
Outdoor traversal	327W	64 channel	Huawei	6°/3°	200°	10

Cell Parameters

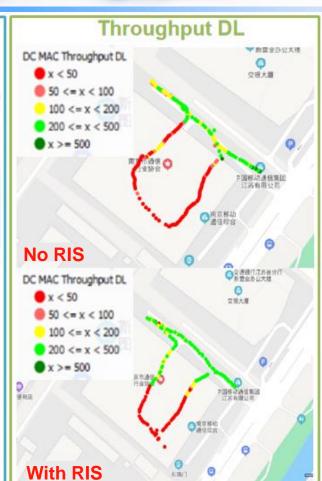
е	Sector	DL frequency point	DL BW	Physical cell identification	Cell duplex mode	Time slot ratio
Outdoor cover indoor undertower coverage	1	2.6 GHz	100	301	TDD	8:2
Outdoor traversal	2	2.6 GHz	100	13	TDD	8:2

RIS parameters

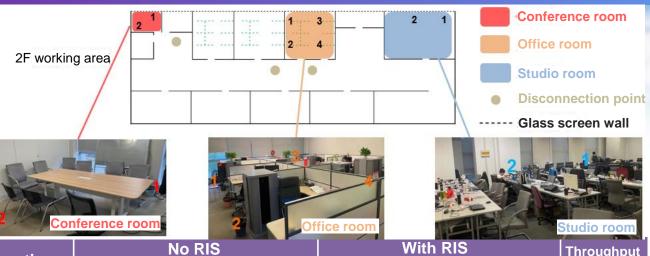

Size	Quality	Elements	Input voltage	Rated power
160cm*80cm	/	16*32	24V	3-4W

Vertical

Trial Results in 5G Network: Tower Shadow



	SS-RSRP		SS-S	SS-SINR		ughput
	5%	50%	5%	50%	5%	50%
No RIS	-102.18	-94.93	-11.87	-6.25	4.75	91.50
With RIS	-98.15	-91.13	-11.70	-6.01	3.25	109.00



- Coverage: RSRP improved by certain extent, edge UE increase, UE average RSRP coverage increase 3.8 dB
- Throughput: average user throughput increased by about 17.5 Mbps, about 19%
- SINR: no significant gain, perhaps due to the other cell interference reflected by RIS

Trial Results in 5G Network: Outdoor to Cover Indoor

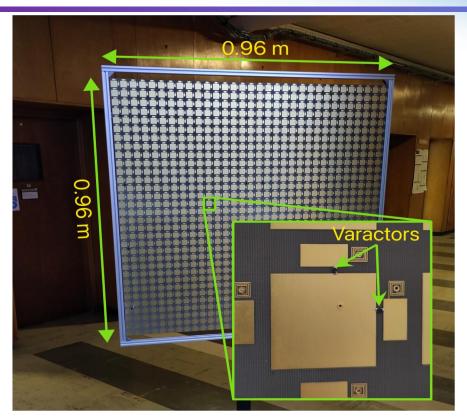
Conference room		Office room				Studio room	
Test locations		No R	RIS		With	RIS	Throughput
Test locations	RSRP	SINR	Throughput DL	RSRP	SINR	Throughput DL	gains
2F conference room point 1	-108.31	1.57	67.85	-98.28	3.45	92.87	37%
2F conference room point 2	-109.05	4.34	70.21	-99.29	5.07	142.06	102%
2F office room point 1	-104.46	-2.96	109.68	-96.99	1.15	247.45	126%
2F office room point 2	-110.35	-1.1	70.72	-100.57	5.32	155.39	120%
2F office room point 3	-111.54	-2.87	58.69	-97.78	4.69	127.39	118%
2F office room point 4	-102.3	3.46	132.64	-98.36	4.63	137.67	4%
2F studio room point 1	-100.34	1.95	64.3	-102.26	1.82	50.94	-20%
2F studio room point 2	-104.88	3.01	54.4	-101.43	0.25	63.64	17%
4F supermarket point 1	-109.43	-0.24	64.38	-92.43	6.21	161.63	151%
4F supermarket point 2	-106.35	2.51	71.08	-102.58	1.75	207.73	192%
4F supermarket point 3	-114.58	-0.75	47.68	-102.35	-1.67	134.17	181%
4F supermarket point 4	-114.17	-4.24	71.74	-102.55	-2.17	144.4	101%

4F supermarket

- Ten fixed locations tested. RIS helps signal to penetrate through buildings, but unable through an internal wall in the indoor environment;
- After deploying RIS, performance of most fixed locations has improved, with an average RSRP improvement of 10 dB and a rate increase of 78 Mbps per location;
- Significant signal fluctuations are observed across various elevations

Trial Results in 5G Network: Outdoor Traversal

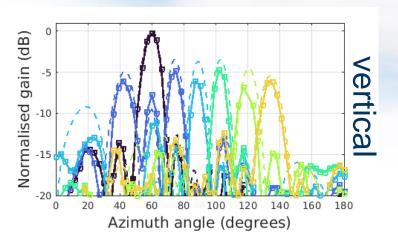
With RIS

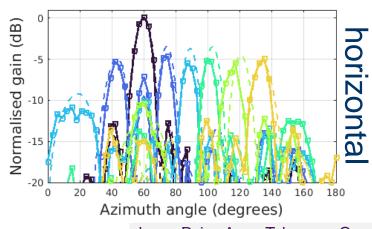


- Significant impact on edge users, with edge users' RSRP increased by 3.3 dB, edge users' SINR increased by 1.45 dB, and edge throughput increasing by 79 Mbps;
- Coverage distance extended by 60 meters.

With RIS

With RIS

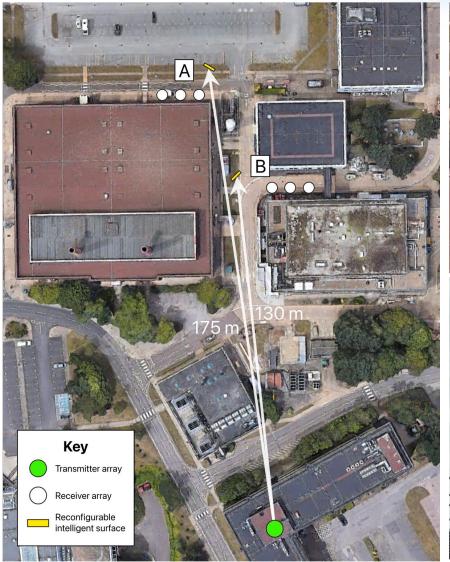

Trial in 5G Commercial Network @3.2~3.8 GHz: Configuration

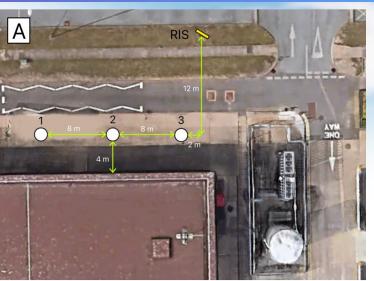


RIS parameters:

- Frequency: 3.2~3.8 GHz (bandwidth 200MHz)
- #elements per RIS: 16*16=256
- Dual-polarized
- Varactor: 2 programmable voltage levels

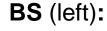
Beam pattern


Beamforming method:

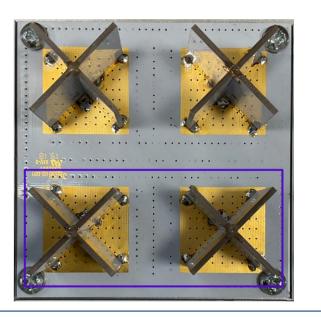

low-complexity beam search

James Rains, Anvar Tukmanov, Qammer Abbasi, Muhammad Imran (University of Glasgow & BT Labs,), RIS-Enhanced MIMO Channels in Urban Environments: Experimental Insights, arXiv:submit/5168799

Trial in 5G Commercial Network @3.2~3.8 GHz: Scenario



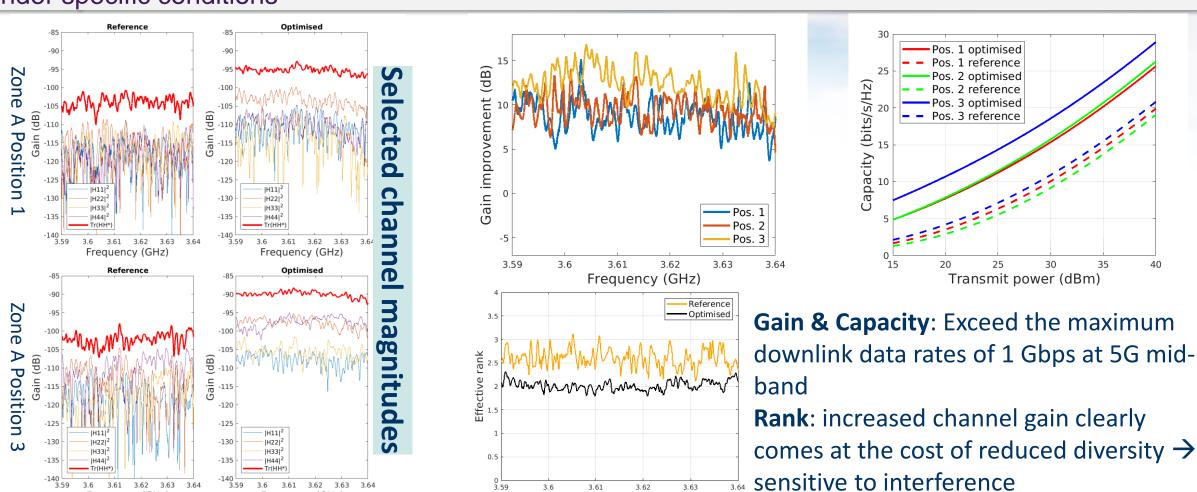
Measurements:


- Roof top BS
- Street level RIS and receiver
- Location A and B
- 3 locations in each Location Zone

- Sector antenna
- · Main lobe: north
- •azimuth 90°
- elevation 6.5°

Receiver (right)::

4 ports



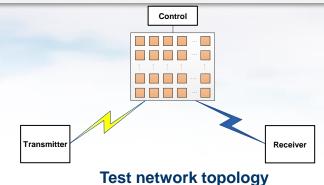
Trial in 5G Commercial Network @3.2~3.8 GHz: Results

RIS and corresponding beam search algorithm can achieve channel gain enhancement of 10 ~15 dB under specific conditions

Frequency (GHz)

Frequency (GHz)

Frequency (GHz)


Prototype System Testing in IMT-2030

Set a multi-stage test plan with three test cases of RIS, including indoor coverage, outdoor coverage, and functionality testing

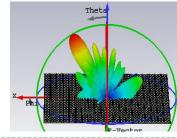
Test case	No.	Test items	Test description	Expected output
Functional test	1		Interference of RIS beamforming to adjacent frequency signals	Interference suppression ratio of the adjacent channel introduced by RIS beam
(anechoic chamber)	2	RIS to control beam: main lobe and grating lobe performance	Power in the main lobe and grating lobe directions of RIS	Power level of RIS-controlled beam main lobe and side lobe
Indoor	3	RIS indoor corridor coverage performance	Impact of RIS on indoor corridor coverage	Indoor users' receive power and throughput with or without RIS, and compare the differences between RIS and metal plates
coverage test	4	RIS indoor office area coverage performance	Impact of RIS on indoor office area scene coverage	Indoor users' receive power and throughput with or without RIS, and compare the differences between RIS and metal plates
	5	RIS outdoor coverage performance	Impact of RIS fixed beam on outdoor coverage	Outdoor users' received power and throughput with fixed beams static RIS or without RIS
Outdoor coverage test	6		Multi-user interference of RIS coverage areas in outdoor	Interference performance impact on different outdoor users with or without RIS
	7	RIS outdoor user level beamforming performance (optional)	Impact of RIS user-specific beams on user performance	Outdoor users' received power and throughput with user-specific beams semi-static RIS or without RIS

RIS AND STREET AND ST

Indoor coverage test

Test specification for Microwave Anechoic Chamber

Specification for microwave anechoic chamber test cases including consistency, reciprocity, polarization direction, and other test cases

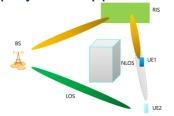

Test case	Test purpose	Expected results
<i>y</i>	Compare and analyze the consistency between the reflected beam pattern of RIS and the simulation results. Provide accuracy support for other performances of RIS based on the simulation results.	
Beam scanning range test	Verify the beam scanning range of RIS, and summarize the beam change rules under different angles.	Beam scanning range is highly correlated with the array size (effective aperture). Can basically meet \pm 60 ° scanning under normal incidence conditions.
Reciprocity test	Test the beam reciprocity of RIS panel to provide support for deployment and protocol design.	Horizontal angle reciprocity within the range of \pm 60 ° can be basically satisfied. Elevation angle reciprocity needs to be verified.
Operating bandwidth test	Verify the beam adjustment ability of RIS at different frequency points to determine the effective working bandwidth.	Deviation from the central frequency point results in the unit reflection phase deviation and decreased panel beam control ability. When large frequency deviation, RIS loses mirror reflection characteristics.
Polarization direction test	Explore the response rules of RIS panels to electromagnetic waves of different polarization modes.	RIS only responds to co-polarized electromagnetic waves and exhibits mirror reflection characteristics for cross-polarized electromagnetic waves.

Sort out the implementation scheme of RIS anechoic chamber test. Investigate the differences in test schemes like compact field, planar near field, and bow frame test. Discuss and preliminarily design a multi-functional anechoic chamber test scheme. Promote electromagnetic simulation, anechoic chamber test, and outfield verification of RIS. Identify problems and make clear conclusions.

Electromagnetic simulation Microwave anechoic chamber

Combined with full-wave simulation, investigate the basic performance of

RIS



Verify beam regulation, polarization, reciprocity, etc.

Real field verification

Complementary field verification based on actual deployment applications

To draw conclusions

Analyze technical defects and issues, draw conclusions via comprehensive industry research

Contents

- Chapter 1: Introduction
 - i. Background of RIS
 - ii. RIS fundamentals
 - iii. Hardware design and prototypes
- Chapter 2: Advanced algorithms for RIS
 - i. Compressed sensing based channel estimation
 - ii. Two-timescale channel estimation
 - iii. Non-stationary channel estimation
 - iv. Near-field beam training
 - v. RIS beamforming design
- Chapter 3: Advanced architectures for RIS
 - i. Active RIS
 - ii. Transmissive RIS
 - iii. User-centric RIS
 - iv. Wideband RIS
 - v. Holographic RIS

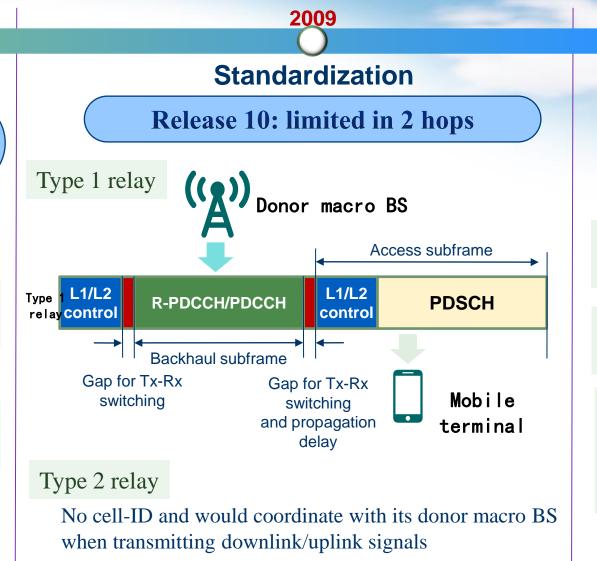
- Chapter 4: System-level simulation of RIS
 - i. System-level simulation setup
 - ii. Performance evaluation results
 - iii. 3 operation modes for RIS
 - iv. RIS vs. network-controlled repeater (NCR)
 - v. Preliminary Exploration of Small Scale Channel Models
- Chapter 5: Trial tests of RIS
 - i. Trials in sub-6 GHz commercial networks
 - ii. Prototype systems testing in IMT-2030
 - iii. Test specifications for microwave anechoic chamber
- Chapter 6: Standardization of RIS
 - i. Precedence in 4G LTE era
 - ii. Possible strategy for RIS
- Chapter 7: Future trends of RIS
- Conclusions

Precedence in 4G LTE era

RIS can be seen as the combination of LTE relay & FD-MIMO

	Sub-feature	Key areas	Characteristics
LTE relay	Type 1 relay	R-PDCCH design	Interleaved R-PDCCH Non-interleaved R-PDCCH
		Relay timing and backhaul subframe structure	Cell size < 6 km 6 km < Cell size < 15 km Cell size > 15 km
		Backhaul subframe configuration and HARQ timing	FDD: 255 config., 6 HARQ processes TDD Config #1, #2, #3, #4, #6
	Type 2 relay	Cooperative mode Resource reuse mode	-
FD-MIMO	Channel model	Geometry based statistical model (GBSM) based	3D based coordinates 3D related parameters
	Enhanced MIMO for vertical beams	Mapping for digital antenna ports to antenna elements	-
		Codebook design	Kronecker product of PMI of horizontal antennas and PMI of vertical antennas
		Downlink control CSI feedback	DCI format enhancement PMI/RI/CQI enhancements

Precedence in 4G LTE Era: LTE relay


Enthusiasm

2006

Multi-hop transmission

"Amplify-andforward" (AF) mode

"Decode-andforward" (DF) mode

Standardization

After 2009

Over sophisticated design

Non-interleaved R-PDCCH and interleaved R-PDCCH

Relay timing and backhaul subframe structure

backhaul subframe structure and hybrid automatic repeat request (HARQ) Marginal ization

2011.2

Separate specifica tion for LTE relay in TS 36.216

Precedence in 4G LTE Era: FD-MIMO

				China Mobile
2009		2013	After 2013	2020
Progress in	Supporti	ng technologies	Standardization	5G
academia	Hardware support			
Performance bound derivation	BS antenna passive and separated radio units	active and integrated radio units	Enhancement to support beam steering	Sub-6 G continue
T. Marzetta, "Noncooperative cellular		Increased number of antenna ports		developi ng LTE
wireless with unlimited numbers of base station antennas," IEEE Trans. Wireless Comm., vol. 9,	Channel model Reused from 2D	Modification: formal definitions of 3D	Codebook design: Kronecker product to extend PMI to vertical dimension	Rel-13
no. 11, Nov. 2010, pp. 3590-3600.	channel model: operation bands and	coordinates and distances,	CSI feedback: enhanced DCI, PMI, and CQI	00
	the basic cell layout and core model	*		

Precedence in 4G LTE Era: Lessons Learned

LTE relay

Lack of discipline and the scope was quite open

 e.g. drastically different candidate technologies, Type 1 & Type 2 relay

Narrowed deployment scenarios, need concise specification, **but**

- interleaved R-PDCCH
- switching time shorter than OFDM CP
- cell sizes larger than 15 km

Ended up with very narrow scopes targeting for specific use cases

FD-MIMO

Inspired by the classic massive MIMO paper and spanned over total four releases (Rel-12~Rel-15) built upon two solid developments

- breakthrough in MIMO hardware active antennas
- 3D channel model

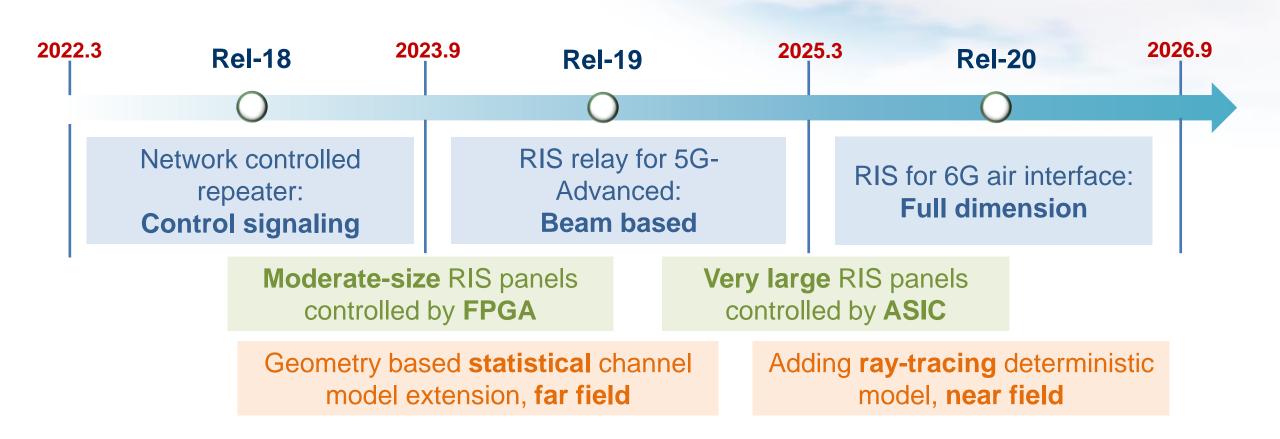
Reusing previous studies with only necessary changes

- GBSM
- enhanced R10 MIMO codebook for FD-MIMO

Generic scenarios leading to wide implementation

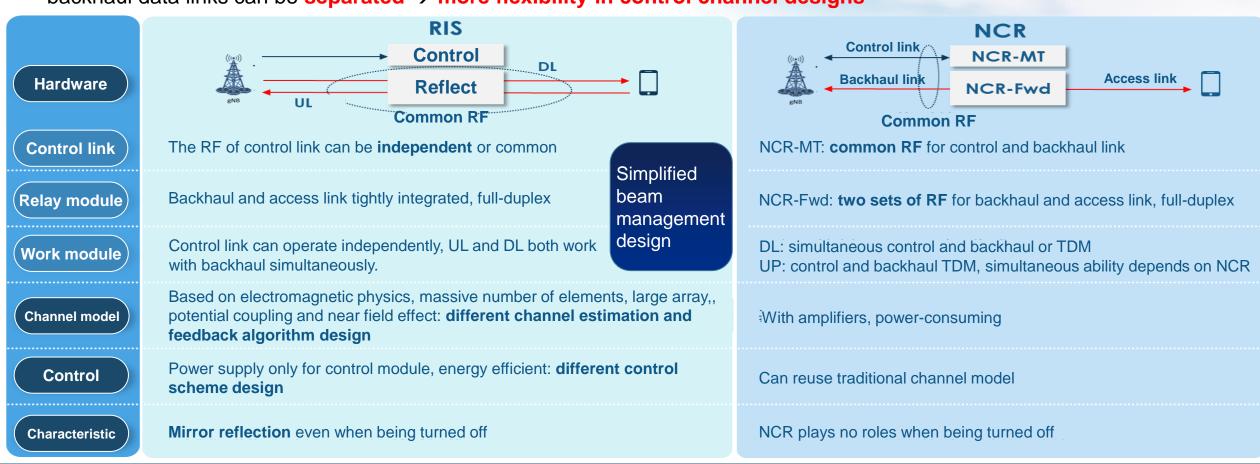
Multi-stage development of technologies is crucial

To avoid over-engineering


Deployment scenarios

Possible Strategy for RIS: standardization

RIS technology follows the evolution of 5G and conducts research based on its unique near-field model



Possible Strategy for RIS: v.s. NCR in Rel-18

- Low cost & low power consumption, RIS has no amplifiers, full-duplex without self-interference, no noise amplification
- System parameter, RIS has more number of elements than NCR, thus able to form narrower beams
- Simplify control link, control and backhaul links of NCR share a common RF module; For RIS, RF modules of control and backhaul data links can be separated → more flexibility in control channel designs

Possible Strategy for RIS: hardware & control

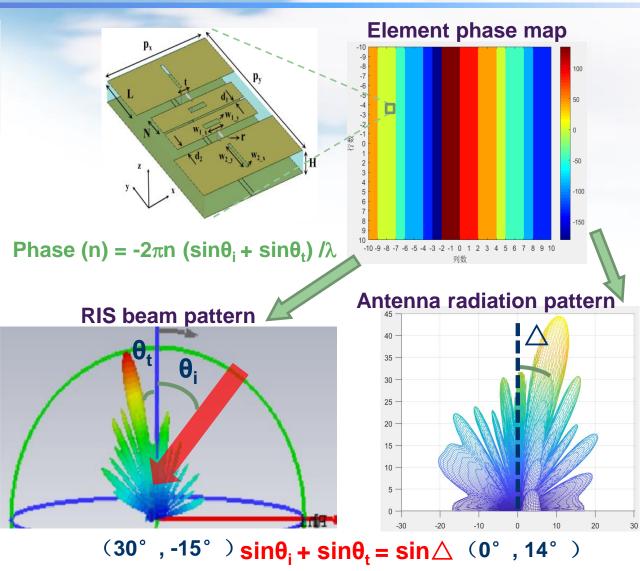
Phase reflection characteristics

- Relations of incident and reflected angles may deviate from the ideal
- Ouantization
- Quality control in mass production

Other characteristics

- Trade-off between adjustment of phase & amplitute
- Independent adjustment of vertical & horizontal polarization

Energy consumption


- Phase maintaining
- Calculation for phase optimization

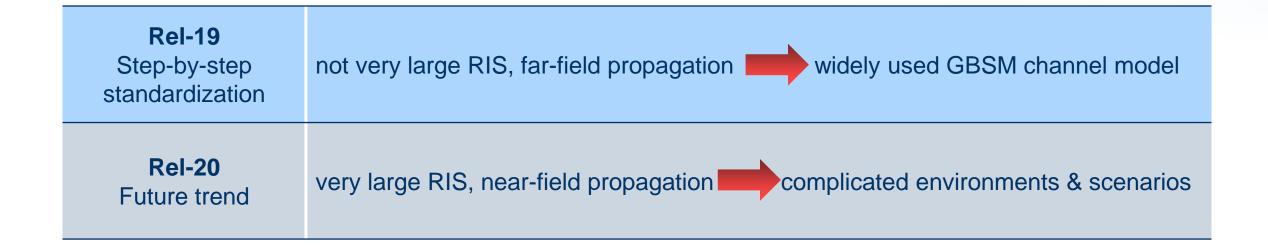
Mass producation

- Specialized manufacturers, customized designs and testing
- Cost optimization: eco-chain

Control signaling design

- Indexing: element phase maps? or beams?
- Cost of more computations

Possible Strategy for RIS: Channel Models

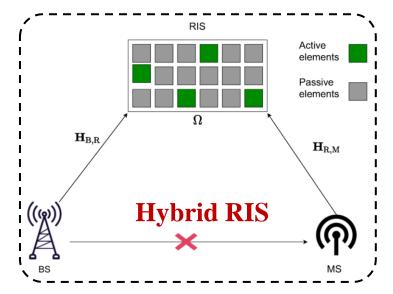


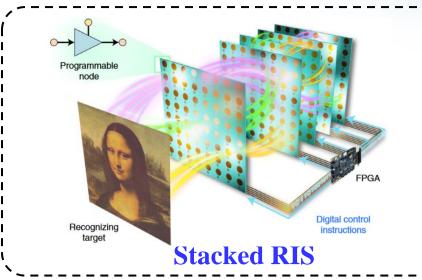
Hard to separately measure the channel for each RIS element for the backhaul link and the access link

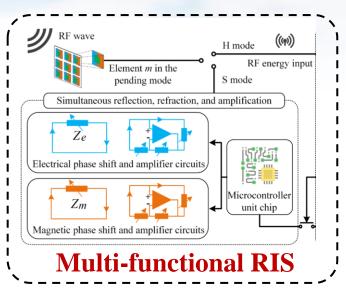
propagation scenarios may be near field due to large array

Contents

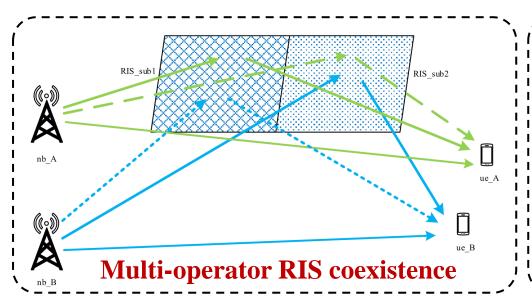
- Chapter 1: Introduction
 - i. Background of RIS
 - ii. RIS fundamentals
 - iii. Hardware design and prototypes
- Chapter 2: Advanced algorithms for RIS
 - i. Compressed sensing based channel estimation
 - ii. Two-timescale channel estimation
 - iii. Non-stationary channel estimation
 - iv. Near-field beam training
 - v. RIS beamforming design
- Chapter 3: Advanced architectures for RIS
 - i. Active RIS
 - ii. Transmissive RIS
 - iii. User-centric RIS
 - iv. Wideband RIS
 - v. Holographic RIS

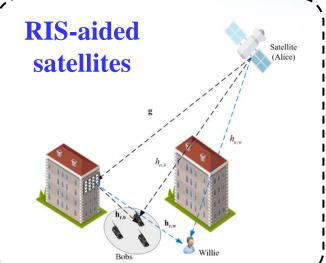

- Chapter 4: System-level simulation of RIS
 - i. System-level simulation setup
 - ii. Performance evaluation results
 - iii. Three operation modes for RIS
 - iv. RIS vs. network-controlled repeater (NCR)
 - v. Preliminary Exploration of Small Scale Channel Models
- Chapter 5: Trial tests of RIS
 - i. Trials in sub-6 GHz commercial networks
 - ii. Prototype systems testing in IMT-2030
 - iii. Test specifications for microwave anechoic chamber
- Chapter 6: Standardization of RIS
 - i. Precedence in 4G LTE era
 - ii. Possible strategy for RIS
- Chapter 7: Future trends of RIS
- Conclusions

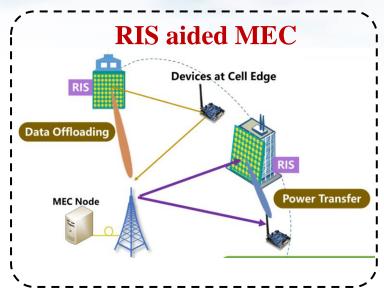

Future Trends of RIS: New Architectures



- Hybrid active and passive RIS aided wireless communications
- Stacked RIS aided joint RF computing and communications
- Multi-functional RIS aided intelligent agent network


- [1] R. Schroeder, J. He, G. Brante, and M. Juntti, "Two-Stage Channel Estimation for Hybrid RIS Assisted MIMO Systems," *IEEE Trans. Commun.*, vol. 70, no. 7, pp. 4793-4806, Jul. 2022.
- [2] C. Liu, Q. Ma, Z. J. Luo, Q. R. Hong, Q. Xiao, H. C. Zhang, and T. J. Cui. "A programmable diffractive deep neural network based on a digital-coding metasurface array", *Nat. Electron.*, vol. 5, no. 2, pp. 113-122, Feb. 2022.
- [3] W. Wang, W. Ni, H. Tian, Y. C. Eldar, and R. Zhang, "Multi-functional reconfigurable intelligent surface: System modeling and performance optimization," *IEEE Trans. Wireless Commun.*, Aug. 2023.


Future Trends of RIS: New Scenarios

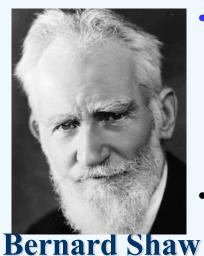


- Multi-operator RIS coexistence: Address the RIS interference from multiple operators
- RIS-aided satellite communications (including direct link with satellites)
- RIS-aided mobile edge computing (MEC) network

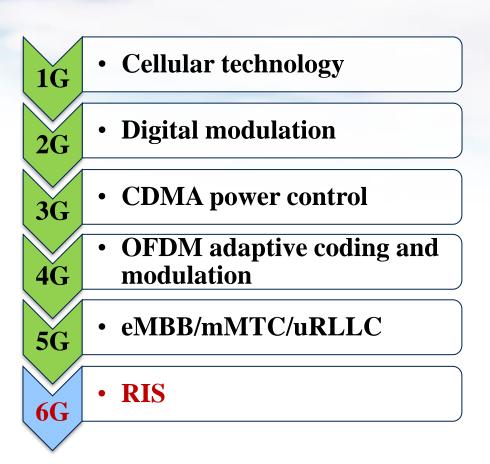
- [1] Y. Zhao and X. Lv, "Network Coexistence Analysis of RIS-Assisted Wireless Communications," *IEEE Access*, vol. 10, pp. 63442-63454, 2022.
- [2] Z. Lin et al., "Refracting RIS-aided hybrid satellite-terrestrial relay networks: Joint beamforming design and optimization," IEEE Trans. Aerospace Electro. Sys., vol. 58, no. 4, pp. 3717-3724, Aug. 2022.
- [3] X. Yu, K. Yu, X. Huang, X. Dang, K. Wang, and J. Cai, "Computation efficiency optimization for RIS-assisted millimeter-wave mobile edge computing systems," *IEEE Trans. Commun.*, vol. 70, no. 8, pp. 5528-5542, Aug. 2022

Conclusions

- Chapter 1: Introduction
 - i. Background of RIS
 - ii. RIS fundamentals
 - iii. Hardware design and prototypes
- Chapter 2: Advanced algorithms for RIS
 - i. Compressed sensing based channel estimation
 - ii. Two-timescale channel estimation
 - iii. Non-stationary channel estimation
 - iv. Near-field beam training
 - v. RIS beamforming design
- Chapter 3: Advanced architectures for RIS
 - i. Active RIS
 - ii. Transmissive RIS
 - iii. User-centric RIS
 - iv. Wideband RIS
 - v. Holographic RIS


- Chapter 4: System-level simulation of RIS
 - i. System-level simulation setup
 - ii. Performance evaluation results
 - iii. Three operation modes for RIS
 - iv. RIS vs. network-controlled repeater (NCR)
 - v. Preliminary Exploration of Small Scale Channel Models
- Chapter 5: Trial tests of RIS
 - i. Trials in sub-6 GHz commercial networks
 - ii. Prototype systems testing in IMT-2030
 - iii. Test specifications for microwave anechoic chamber
- Chapter 6: Standardization of RIS
 - i. Precedence in 4G LTE era
 - ii. Possible strategy for RIS
- Chapter 7: Future trends of RIS
- Conclusions

RIS: Changing Channels for 6G



What has George Bernard Shaw told us?

- Reasonable men adapt themselves to their environment; unreasonable men try to adapt their environment to themselves.
- Thus all progress is the result of the efforts of unreasonable men.
- > British dramatist
- > Nobel Prize in Literature

RIS enables a paradigm shift from adapting channels to changing channels for 6G

4–8 December 2023 // Kuala Lumpur, Malaysia

Thank you very much for your attention!

Linglong Dai (IEEE Fellow)

Tsinghua University, Beijing, China daill@tsinghua.edu.cn

Yifei Yuan (IEEE Fellow)

China Mobile Research Institute, Beijing, China yuanyifei@chinamobile.com